SAMPLE PAPER
 CLASS - X | CBSE | MATHEMATICS

Time: 3 hours
Maximum Marks : 80

GENERAL INSTRUCTIONS

1. This Question Paper has 5 Sections A-E.
2. Section \mathbf{A} has 20 MCQs carrying 1 mark each
3. Section \mathbf{B} has 5 questions carrying 02 marks each.
4. Section \mathbf{C} has 6 questions carrying 03 marks each.
5. Section D has 4 questions carrying 05 marks each.
6. Section \mathbf{E} has 3 case based integrated units of assessment (04 marks each) with sub parts of the values of 1,1 and 2 marks each respectively.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided.
8. Draw neat figures wherever required. Take $\pi=22 / 7$ wherever required if not stated.

Bengaluru Campuses

Jayanagar Campus (HO)
No. .36, 15th Cross, 3rd Block, Near Southend Circle, Opp. City Central Library, Jayanagar, Bengaluru-560011

Jayanagar I Koramangala I Marathahalli I Banaswadi I Hebbal I Hsr Layout I Bannerghatta Basaveshwara Nagar I Sarjapura I Jalahalli Indiranagar I Whitefield

SCAN THE QR CODE FOR SOLUTIONS

BENGALURU HELP LINE NO : 080-46704000

ALLEM SOUTH INDIA SUCCESS JOURNEY

NEET (UG) RESULT 2022

02 in Top 100 AIR with 700 Marks | 06 in Top 500 AIR with 685 Marks 42 Students Scored 650 \& Above | 115 Student Scored 600 \& Above

JEE (ADV) RESULT 2022
02 in Top 30 AIR | 04 in Top 200 AIR | 08 in Top 500 AIR 23 in Top 1000 AIR | 46 in Top 2000 AIR
AIR 13
AIR 27

AIR 27

18
TIMES ALL INDIA RANK-1

In JEE \& Pre-Medical Entrance Exams in Last 13 Years from Classroom Authenticity of Result: Power of ALLEM

ALLENites Make Nation Proud by Getting Admission in Most Prestigious College in The World Of Engineering

SECTION - A

1. Which term of the A.P $6,13,20,27 \ldots \ldots$. is 97
(A) 14
(B) 13
(C) 15
(D) 12
2. Find the ratio of the total surface area $\&$ lateral surface area of a cube.
(A) $6: 2$
(B) $3: 2$
(C) $2 \sqrt{3}: 1$
(D) $4: 3$
3. Find the value of x, if $3-x, x+2,2 x+1$ are in A.P.
(A) 0
(B) 2
(C) 1
(D) -1
4. A bag contain 5 red balls \& some blue balls. If probability of drawing a blue ball is double that of red ball. Find number of blue balls in the bag?
(A) 5
(B) 3
(C) 10
(D) 6
5. One card is drawn from a well shuffled deck of 52 cards. The probability that it is black queen is
(A) $\frac{1}{26}$
(B) $\frac{1}{13}$
(C) $\frac{1}{52}$
(D) $\frac{2}{13}$
6. If $\sin \theta=\frac{1}{3}$, find the value of $2 \cot ^{2} \theta+2$.
(A) 15
(B) 16
(C) 17
(D) 18
7. For what value of k is -4 a zero of the polynomial $f(x)=x^{2}-x-(2 k+2)$
(A) 6
(B) -6
(C) 9
(D) -9
8. The value of k for which the system of equation $x+y-4=0$ and $2 x+k y=3$ has no solution is
(A) -2
(B) $\neq 2$
(C) 3
(D) 2
9. A wheel makes 1000 revolutions in covering a distance of 88 km . The radius of the wheel is,
(A) 11 m
(B) 14 m
(C) 12 m
(D) 10 m
10. The numerical value of $\left(\frac{1}{\cos \theta}+\frac{1}{\cot \theta}\right)\left(\frac{1}{\cos \theta}-\frac{1}{\cot \theta}\right)$ is,
(A) 0
(B) -1
(C) 1
(D) 2
11. Given that $\sin \theta=\frac{\mathrm{a}}{\mathrm{b}}$ then $\cos \theta$ is equal to
(A) $\frac{b}{\sqrt{b^{2}-a^{2}}}$
(B) $\frac{\mathrm{b}}{\mathrm{a}}$
(C) $\frac{\sqrt{b^{2}-a^{2}}}{b}$
(D) $\frac{a}{\sqrt{b^{2}-a^{2}}}$
12. Abscissa of centroid of triangle having vertices $(a, b-c) ;(b, c-a) ;(c, a-b)$ is
(A) 0
(B) $\frac{a+b+c}{3}$
(C) $a+b+c$
(D) $\frac{2 a+2 b+2 c}{3}$
13. In the given figure, if TP and TQ are tangents to a circle with centre O , so that $\angle \mathrm{POQ}=110^{\circ}$, then $\angle \mathrm{PTQ}$ is

(A) 110°
(B) 90°
(C) 80°
(D) 70°
14. The sum of the zeroes of the polynomial $2 x^{2}-8 x+6$ is
(A) -3
(B) 3
(C) -4
(D) 4
15. The distance of the point $P(3,-4)$ from the origin is
(A) 7 units
(B) 5 units
(C) 4 units
(D) 3 units
16. The mid point of the line segment joining the points $(-5,7)$ and $(-1,3)$ is
(A) $(-3,7)$
(B) $(-3,5)$
(C) $(-1,5)$
(D) $(5,-3)$
17. The number of decimal places after which the decimal expansion of the rational number $14587 / 1250$ will terminate is
(A) 1
(B) 2
(C) 3
(D) 4
18. If $\sin (\mathrm{A}+\mathrm{B})=\sin \mathrm{A} \cos \mathrm{B}+\cos \mathrm{A} \sin \mathrm{B}$ then find $\sin 75^{\circ}=$
(A) $\frac{\sqrt{3}+1}{2 \sqrt{2}}$
(B) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(C) $\frac{\sqrt{3}-1}{2}$
(D) $\frac{\sqrt{3}+1}{\sqrt{2}}$
19. In the given figure, $\mathrm{DE} \| \mathrm{BC}$. What is the value of EC ?

(A) 4
(B) 5
(C) 6
(D) 2
20. A vertical stick 12 m long casts a shadow 8 m long on the ground. At the same time tower casts the shadow 40 m long on the ground. Find height of tower?
(A) 60 m
(B) 40 m
(C) 80 m
(D) 100 m

SECTION - B

1. Find the four angles of cyclic quadrilateral ABCD in which
$\angle \mathrm{A}=(2 \mathrm{x}-1)^{\circ}$
$\angle \mathrm{B}=(\mathrm{y}+5)^{\circ}$
$\angle \mathrm{C}=(2 \mathrm{y}+15)^{\circ}$
$\angle \mathrm{D}=(4 \mathrm{x}-7)^{\circ}$
2. If a, b, c are in AP, then find the roots of $a x^{2}+2 b x+c=0$

(OR)

Find the mode of following data :

Classes	$0-50$	$50-100$	$100-150$	$150-200$	$200-250$
Frequency	12	13	15	8	12

3. Find the probability that a leap year selected at random will contain 53 sundays
4. If $2 \sin (\mathrm{~A}+\mathrm{B})=\sqrt{3}$ and $\tan \mathrm{B}=1$, find $\sin 2 \mathrm{~A}$
5. In the given figure a circle touches the sides $B C$ of $\triangle A B C$ at P and $A B$ and $A C$ are produced at Q and R respectively. If $A Q=15 \mathrm{~cm}$. Find the perimeter of $\triangle A B C$

(OR)
The perimeter of a sector of circle with central angle 90° is 25 cm . Find the radius of a circle

SECTION - C

1. Find 31st term of an A.P., whose 11 th term is 38 and 16 th term is 73 .

(OR)

Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
2. A motor boat whose speed is $18 \mathrm{~km} / \mathrm{hr}$ in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream
3. Water flows at the rate of $10 \mathrm{~m} / \mathrm{min}$, through a cylindrical pipe having its diameter as 5 mm . How much time will it take to fill a conical vessel whose diameter of base is 40 cm and depth 24 cm .
4. The mean of the following frequency table is 50 . But the frequency f_{1} and f_{2} in class 20-40 and 60-80 are missing. Find the missing frequencies.

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	Total
Frequency	17	f_{1}	32	f_{2}	19	120

5. The area of a rectangle gets reduced by 9 square units if its length is reduced by 5 units, and the breadth is increased by 3 units. If we increase the length by 3 units and breadth by 2 units, the area is increased by 67 square units. Find the length of breadth of the rectangle.

(OR)

If α and β are the zeroes of the quadratic polynomial $p(s)=3 s^{2}-6 s+4$, find the value of
$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3 \alpha \beta$.
6. Find the area of sector of circle with radius 4 cm and of angle 30°. Also find the area of the corresponding major sector.[Take $\pi=3.14$]

SECTION - D

1. The angle of elevation of a cloud from a point 200 metres above a lake is 30° and the angle of depression of the reflection of the cloud in the lake is 60°. Find the height of the cloud.
(OR)
If the polynomial $f(x)=x^{4}-6 x^{3}+16 x^{2}-26 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be a , find $\mathrm{k} \& \mathrm{a}$.
2. If $\sec \theta+\tan \theta=P$, show that $\frac{\mathrm{P}^{2}-1}{\mathrm{P}^{2}+1}=\sin \theta$
3. In figure, DEFG is a square and $\angle \mathrm{BAC}=90^{\circ}$

Prove that
(i) $\Delta \mathrm{AGF} \sim \Delta \mathrm{DBG}$
(ii) $\triangle \mathrm{AGF} \sim \triangle \mathrm{EFC}$
(iii) $\triangle \mathrm{DBG} \sim \triangle \mathrm{EFC}$
(iv) $\mathrm{DE}^{2}=\mathrm{BD} \times \mathrm{EC}$
4. Find the cordinates of the centre of the circle passing through the points $(0,0),(-2,1)$ and $(-3,2)$.

Also find its radius?

(OR)

(i) A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1 cm , and the height of the cone is equal to it's radius. Find the volume of solid in terms of π
(ii) A solid wooden toy is in the shape of a right circular cone mounted on a hemisphere. If the radius of the hemisphere is 4.2 cm and the total height of the toy is 10.2 cm find the volume of the wooden toy?

SECTION - E

1. A farmer wants to dig a well in his house premises for his household purpose. He dug a well 30 m deep and 7 m diameter. The earth from digging the well can be used construction of his house. For this, he wants to prepare bricks of size $15 \mathrm{~cm} \times 8 \mathrm{~cm} \times 5 \mathrm{~cm}$ each.

Study the above data and answer the following
(i) Find the surface area of each brick.
(ii) Find the number of bricks he prepared with the earth which he obtained during digging the well
2. Amar bought a motor cycle. He does not know how to ride it. So he decided to learn every day for 1 hour. After getting same practice he would like to increase the speed day by day. First day he drove with the speed of $10 \mathrm{~km} / \mathrm{hr}$, second day $15 \mathrm{~km} / \mathrm{hr}$, third day $20 \mathrm{~km} / \mathrm{hr}$, 4th day $25 \mathrm{~km} / \mathrm{hr}$, 5 th day $30 \mathrm{~km} / \mathrm{hr}$ and so on. He decided to learn within 12 days.

Study the data and answer the following.

1. Find the distance travelled by Amar on each day.
2. Is this data forms AP
3. If yes, find the total distance travelled by Amar in 12 days.
4. A seminar is being conducted by an Educational Organisation, where the participants will be educators of different subjects. The number of participants in Hindi, English and Mathematics are 60, 84 and 108 respectively.

(i). In each room the same number of participants are to be seated and all of them being in the same subject, hence maximum number of participants that can be accommodated in each room are
(ii). What is the minimum number of rooms required during the event?
(iii). The LCM of 60,84 and 108 is
(iv). The product of HCF and LCM of 60,84 and 108 is

OUR ACHIEVEMENTS IN INTERNATIONAL OLYMPIADS

International Biology Olympiad

International
Chemistry Olympiad
$54^{\text {th }}$ International Chemistry Olympiad IChO-2022 Tianjin, China

International
Earth Science Olympiad

$15^{\text {th }}$ International Earth
Science Olympiad IESO-2022
ITALY - AOSTA
5 GOLD, 2 SILVER \& 1 BRONZE MEDALS
Won by ALLENites in Individual \& Team Events

4 out of 8 Students of the Wining Indian Team are Allen Classroom Students.
The Indian Team have Bagged 10 Gold, 4 Silver \& 6 Bronze Medals in Individual \& Team Events.

International
Mathematical Olympiad

$63^{\text {rd }}$ International
Mathematical Olympiad IMO-2022
at Oslo, Norway

Mohit Hulse Classroom

Classroom

Hit Huse is an indian origin Allen classroom student who represented UK $63^{\text {td }}$ International Mathematical Olympiad (IMO '22) at Oslo, Norway)

International Physics Olympiad

$52^{\text {nd }}$ International Physics
Olympiad IPh0-2022 Minsk, Belarus

International Olympiad in Astronomy \& Astrophysics

$15^{\text {th }}$ International Olympiad in Astronomy \& Astrophysics IOAA-2022 at Kutaisi, Georgia

Md. Sahil Akhtar Classroom
 Classroom

4 out of $\mathbf{6}$ Students of the winning INDIAN TEAM who Won GOLD MEDALS in IJSO 2021,UAE are from ALLEN Classroom

[^0]

ALLEN South India Campuses

\#PreparationForSuccess

South Regional Office
B1 Building \#36, 15th Cross, 3rd Block, Near Southend Circle, Opp City Central Library Jayanagar Bengaluru-560011 Web: www.allen.ac.in/bengaluru | Tel.: 080-46704000

Corporate Office

"SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005
E-mail: info@allen.ac.in | Web: www.allen.ac.in
Tel.: +91-744-2757575, +91-744-3556677

[^0]: Historic Performance of Class $8^{\text {th }}$ student Devesh Bhaiya by winning Gold Medal

