SAMPLE PAPER

SECTION - A (PHYSICS)

1. A constant voltage at different frequencies is applied across a capacitance C as shown in the figure. Which of the following graphs

Correctly depicts the variation of current with frequency?
(1)

(2)

(3)

(4)

2. The value of alternating emf E in the given circuit will be :

(1) 220 V
(2) 140 V
(3) 100 V
(4) 20 V
3. A series LCR AC circuit has $\mathrm{R}=5 \Omega, \mathrm{~L}=40 \mathrm{mH}$ and $\mathrm{C}=1 \mu \mathrm{~F}$, the bandwidth of the circuit is :-
(1) $62.5 \mathrm{rad} / \mathrm{sec}$.
(2) $125 \mathrm{rad} / \mathrm{sec}$.
(3) $187.5 \mathrm{rad} / \mathrm{sec}$.
(4) $250 \mathrm{rad} / \mathrm{sec}$.
4. In parallel plate capacitor the distance between plates is $\mathrm{d}=0.1 \mathrm{~mm}$. The medium between the plates is air. The maximum potential difference which can be applied to the capacitor is : (Dielectric strength of air $=3 \mathrm{MV} / \mathrm{m}$)
(1) 3×10^{6} volt
(2) 300 volt
(3) 3×10^{10} volt
(4) Infinite
5. It is required to measure equivalent resitance of circuit with ideal battery, ideal voltmeter and ideal ammeter. Which circuit diagram shows voltmeter V and ammeter A correctly positioned to measure the total resistance of circuit.
(1)

(2)

(3)

(4)

6. In the adjoining circuit diagram the currents flowing in 5Ω and 10Ω resistances will respectively be :- $\left(\mathrm{I}_{2}\right.$ and $\left.\mathrm{I}_{3}\right)$

(1) $\frac{2}{13} \mathrm{~A}, \frac{4}{13} \mathrm{~A}$
(2) $\frac{13}{2} \mathrm{~A}, \frac{4}{13} \mathrm{~A}$
(3) $\frac{4}{13} \mathrm{~A}, \frac{2}{13} \mathrm{~A}$
(4) $\frac{13}{4} \mathrm{~A}, \frac{13}{2} \mathrm{~A}$
7. A power transmission line feeds input power at 2300 V to a step down transformer having 4000 turns in its primary. What should be the number of turns in the secondary to get output power at 230 volt :-
(1) 40
(2) 400
(3) 4
(4) 4000
8. Oscillating magnetic field in a plane EMW is given by $\mathrm{B}_{\mathrm{y}}=8 \times 10^{-6} \sin \left(5000 \pi \mathrm{x}-3 \times 10^{11} \pi \mathrm{t}\right) \mathrm{T}$. Expression for oscillating electric field will be
(1) $\overrightarrow{\mathrm{E}}=240 \sin \left(5000 \pi \mathrm{x}-3 \times 10^{11} \pi \mathrm{t}\right) \hat{\mathrm{k}}$
(2) $\overrightarrow{\mathrm{E}}=480 \sin \left(5000 \pi \mathrm{x}-3 \times 10^{11} \pi \mathrm{t}\right) \hat{\mathrm{k}}$
(3) $\overrightarrow{\mathrm{E}}=+2400 \sin \left(5000 \pi \mathrm{x}-3 \times 10^{11} \pi \mathrm{t}\right) \hat{\mathrm{k}}$
(4) $\overrightarrow{\mathrm{E}}=-480 \sin \left(5000 \pi \mathrm{x}-3 \times 10^{11} \pi \mathrm{t}\right) \hat{\mathrm{k}}$
9. Two charged spherical conductors of radius R_{1} and R_{2} are connected by a wire. If σ_{1} and σ_{2} are final surface charge densities of two sphere than which condition is correct when finally charge transfer stop :-
(1) $\sigma_{1} R_{2}=\sigma_{2} R_{1}$
(2) $\sigma_{1} R_{1}=\sigma_{2} R_{2}$
(3) $\sigma_{1} R_{2}^{2}=\sigma_{2} R_{1}^{2}$
(4) $\sigma_{1} R_{1}^{2}=\sigma_{2} R_{2}^{2}$
10. A dipole of dipole moment P is placed parallel to electric field E. Find work done to rotate dipole by 30° angle?
(1) $\frac{P E}{2}$
(2) $\frac{\sqrt{3}}{2} \mathrm{PE}$
(3) $\operatorname{PE}\left(1-\frac{\sqrt{3}}{2}\right)$
(4) zero
11. If the radius and acceleration due to gravity both are doubled, escape velocity of earth will become :
(1) $11.2 \mathrm{~km} / \mathrm{s}$
(2) $22.4 \mathrm{~km} / \mathrm{s}$
(3) $5.6 \mathrm{~km} / \mathrm{s}$
(4) $44.8 \mathrm{~km} / \mathrm{s}$
12. The range of a projectile, thrown with an initial speed u at the angle of projection 15° from horizontal is R . What will be the range if it is thrown with an initial speed 2 u at an angle 30° from horizontal?
(1) $2 \sqrt{3} \mathrm{R}$
(2) $4 \sqrt{3} \mathrm{R}$
(3) $\sqrt{3} R$
(4) $5 \sqrt{3} \mathrm{R}$
13. A car is moving horizontally along a straight line with a uniform velocity of $25 \mathrm{~ms}^{-1}$. A projectile is to be fired from this car in such a way that it will return to it after it has moved 100 m . The initial vertical speed of the projection must be :- $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) $10 \mathrm{~ms}^{-1}$
(2) $20 \mathrm{~ms}^{-1}$
(3) $15 \mathrm{~ms}^{-1}$
(4) $25 \mathrm{~ms}^{-1}$
14. Velocity of a particle of mass 2 kg varies with time ' t ' according to the equation $\overrightarrow{\mathrm{v}}=(2 \mathrm{t} \hat{\mathrm{i}}-4 \hat{\mathrm{j}})$ m / s. Here ' t ' is in seconds. The impulse imparted to the particle in the time interval $0 \leq \mathrm{t} \leq 2 \mathrm{~s}$ is:-
(1) $(4 \hat{\mathrm{i}}) \mathrm{kg}-\mathrm{m} / \mathrm{s}$
(2) $(8 \hat{i}-4 \hat{j}) \mathrm{kg}-\mathrm{m} / \mathrm{s}$
(3) $(8 \hat{i}+4 \hat{j}) \mathrm{kg}-\mathrm{m} / \mathrm{s}$
(4) $(8 \hat{\mathrm{i}}) \mathrm{kg}-\mathrm{m} / \mathrm{s}$
15. In a place where electric field (E) and magnetic field (B) are finite, a charged particle projected along $\mathrm{x}-$ axis with speed v passes undeflected and with uniform speed. We may conclude that :-
(1) such a situation is impossible
(2) x - component of E as well as x - component of B must be zero
(3) if E is along x - axis, then B must be along $z-a x i s$
(4) if B is along z - axis, then E must be along the y - axis only
16. A charged particle (charge q) is moving in a circle of radius R with uniform speed v. The associated magnetic moment μ is given by :
(1) $\frac{q \vee R}{2}$
(2) $q v R^{2}$
(3) $\frac{\mathrm{qvR}^{2}}{2}$
(4) qvR
17. A ultra violet light bulb, emitting 400 nm and infrared bulb emitting 700 nm wavelength radiation, each are rated at 130 W . Then the ratio of the number of photons emitted per second by the UV \& IR sources :-
(1) 0.57
(2) 1.75
(3) 28
(4) 0.04
18. The mass of a ${ }_{5} \mathrm{~B}^{10}$ nucleus is 0.042 u less than the sum of the masses of all its nucleons. The binding energy per nucleon of ${ }_{5} \mathrm{~B}^{10}$ nucleus is nearly:-
(1) 23 MeV
(2) 39 MeV
(3) 5.6 MeV
(4) 3.9 MeV
19. A radioactive nucleus decay as follows :-
$\mathrm{X} \xrightarrow{\alpha} \mathrm{X}_{1} \xrightarrow{\beta} \mathrm{X}_{2} \xrightarrow{\alpha} \mathrm{X}_{3} \xrightarrow{\gamma} \mathrm{X}_{4}$, if the atomic number and the mass number of X are 72 and 180 then the mass number and atomic number of X_{4} are :-
(1) 172,70
(2) 171, 69
(3)
172, 69
(4) 172,68
20. Starting from the origin, a body oscillates simple harmonically with a time period 2 sec . After what time will its kinetic energy will be 75% of the total energy?
(1) $\frac{1}{12} \mathrm{sec}$.
(2) $\frac{1}{6} \mathrm{sec}$.
(3) $\frac{1}{4} \mathrm{sec}$.
(4) $\frac{1}{3} \mathrm{sec}$.
21. A light ray incident at an angle of 45° on one refracting surface of a prism of angle 60° suffers a deviation of 55°. What is the angle of emergence?
(1) 95°
(2) 45°
(3) 30°
(4) 70°
22. Two lenses are placed in contact with each other and the focal length of combination is 80 cm . If the focal length of one is 20 cm , then the power of the other will be :
(1) 1.66 D
(2) 4.00 D
(3) -1.00 D
(4) -3.75 D
23. Four identical rods each of mass M and length L, form a square as shown in the figure. The moment of inertia of this system about diagonal of the square is :

(1) $\frac{2}{3} \mathrm{ML}^{2}$
(2) $\frac{4}{3} \mathrm{ML}^{2}$
(3) $\frac{5}{3} \mathrm{ML}^{2}$
(4) $\frac{10}{3} \mathrm{ML}^{2}$
24. The number of electron hole pair in a pure silicon crystal at 300 K is $6 \times 10^{15} \mathrm{~m}^{-3}$. When it is doped by indium the electron concentration becomes $1.2 \times 10^{9} \mathrm{~m}^{-3}$. The number of indium atoms mixed per cubic meter is (approx)
(1) 1.2×10^{9}
(2) 6×10^{15}
(3) 3×10^{22}
(4) 5×10^{6}
25. V_{0} is the potential barrier across a p-n juction when no battery across $p-n$ junction then in the figure.

(1) 1 and 3 both correspond to forward bais of junction.
(2) 3 corresponds to forward bias of junction and 1 correspond to reverse bias of junction.
(3) 1 corresponds to forward bias and 3 corresponds to reverse bias of junction
(4) 1 and 3 both corresponds to reverse bias of junction.
26. Two friends A and B are waiting for another friend for tea. A took the tea in a cup and mixed the cold milk and then waits. B took the tea in the cup and then mixed the cold milk when the friend comes. Then the tea will be hotter in the cup of-
(1) A
(2) B
(3) Tea will be equally hot in both cups
(4) Friend's cup
27. Two full turns of Screw gauge cover a distance of 1 mm on main scale. The total number of circular scale divisions are 100. The measured value of thickness of sheet will be:

Fig.(1) SCREW GAUGE Fig.(2)
(1) 4.555 mm
(2) 4.295 mm
(3) 2.295 mm
(4) 2.245 mm
28. A particle is projected from point A on a smooth vertical track OABCD as shown. What should be the minimum speed at A so that it can reach point $C ?\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(1) $60 \mathrm{~m} / \mathrm{s}$
(2) $100 \mathrm{~m} / \mathrm{s}$
(3) $80 \mathrm{~m} / \mathrm{s}$
(4) $20 \mathrm{~m} / \mathrm{s}$
29. A particle moves with a velocity $\vec{v}=(5 \hat{i}-3 \hat{j}+6 \hat{k}) \mathrm{m} / \mathrm{s}$ under the influence of a constant force $\vec{F}=(10 \hat{i}+10 \hat{j}+20 \hat{k}) N$. The instantaneous power applied to the particle is:
(1) $200 \mathrm{~J} / \mathrm{s}$
(2) $40 \mathrm{~J} / \mathrm{s}$
(3) $140 \mathrm{~J} / \mathrm{s}$
(4) $170 \mathrm{~J} / \mathrm{s}$
30. The velocity of water waves v may depend upon their wavelength λ, the density of water ρ and the acceleration due to gravity g . The method of dimensions gives the relation between these quantities as (here λ is measured in terms of length)
(1) $\mathrm{v}^{2} \propto \lambda \mathrm{~g}^{-1} \rho^{-1}$
(2) $v^{2} \propto g \lambda \rho$
(3) $v^{2} \propto g \lambda$
(4) $v^{2} \propto g^{-1} \lambda^{-3}$
31. The speed of light (c), universal gravitational constant (G) and Planck's constant (h) are taken as the fundamental units in a system. The dimension of time in this new system should be :-
(1) $\mathrm{G}^{1 / 2} \mathrm{~h}^{1 / 2} \mathrm{c}^{-5 / 2}$
(2) $\mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2} \mathrm{c}^{1 / 2}$
(3) $\mathrm{G}^{1 / 2} \mathrm{~h}^{1 / 2} \mathrm{c}^{-3 / 2}$
(4) $G^{1 / 2} h^{1 / 2} c^{1 / 2}$
32. There are 26 tuning forks arranged in the decreasing order of their frequencies. Each tuning fork give 3 beats with the next. The first one is octave of the last. What is the freqency of $18^{\text {th }}$ tuning fork ?
(1) 100 Hz
(2) 99 Hz
(3) 96 Hz
(4) 103 Hz
33. Two slits seperated by a distance of 1 mm are illuminated with red light of wavelength $6.5 \times 10^{-7} \mathrm{~m}$. Interference fringes are observed on screen placed 1 m from the slits. The distance between the third dark fringe and fifth bright fringe is equal to :-
(1) 0.65 mm
(2) 1.63 mm
(3) 3.25 mm
(4) 4.88 mm
34. At what angle should an unpolarised beam be incident on a crystal of $\mu=\sqrt{3}$, so that reflected beam is polarised :-
(1) 45°
(2) 60°
(3) 90°
(4) 0°
35. A liquid of specific heat $0.8 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$ at temperature $60^{\circ} \mathrm{C}$ is mixed with other liquid of same mass having temperature $45^{\circ} \mathrm{C}$. If temperature of mixture is $53^{\circ} \mathrm{C}$, then specific heat (in $\mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$) of the liquid is :-
(1) 0.5
(2) 0.6
(3) 0.7
(4) 0.8

SECTION - B (PHYSICS)

36. The effective capacitance between $\mathrm{A} \& \mathrm{~B}$ is:-

(1) $\frac{\mathrm{C}}{21}$
(2) $\frac{\mathrm{C}}{28}$
(3) C
(4) None of these
37. A conductor of resistance 3Ω is stretched uniformly till its length is doubled. The wire is now bent in the form of an equilateral triangle. The effective resistance between the ends of any side of the triangle (in ohm) are :-
(1) $\frac{9}{2}$
(2) $\frac{8}{3}$
(3) 2
(4) 1
38. Two coils A and B having turns 300 and 600 respectively are placed near each other. On passing a current of 3.0 ampere in A, the flux linked with A is $1.2 \times 10^{-4} \mathrm{~Wb}$ and with B it is $9.0 \times 10^{-5} \mathrm{~Wb}$. The mutual inductance of the system is :
(1) $4 \times 10^{-5} \mathrm{H}$
(2) $3 \times 10^{-5} \mathrm{H}$
(3) $2 \times 10^{-5} \mathrm{H}$
(4) $1.8 \times 10^{-2} \mathrm{H}$
39. A uniformly charged non-conducting sphere of radius R has a potential V_{0} at a distance 2 R from the surface of sphere, then find the potential at a distance $\frac{\mathrm{R}}{2}$ from center :-
(1) $\frac{11}{4} \mathrm{~V}_{0}$
(2) $\frac{33}{8} \mathrm{~V}_{0}$
(3) $\frac{33}{2} \mathrm{~V}_{0}$
(4) $\frac{11}{2} \mathrm{~V}_{0}$
40. In elliptical orbit of a planet, as the planet moves from apogee position to perigee position :-

List - I		List - II	
(P)	Speed of planet	(1)	Remains same
(Q)	Distance of planet from centre of Sun	(2)	Decreases
(R)	Potential energy of planet	(3)	Increases
(S)	Angular momentum about centre of Sun	(4)	Can not say

(1) P-3; Q-2; R-2; S-1
(2) P-1; Q-2; R-2; S-3
(3) P-3; Q-1; R-2; S-2
(4) P-3; Q-2; R-1; S-2
41. A driver applies the brakes on seeing traffic signal 400 m ahead. At the time of applying the brakes vehicle was moving with $15 \mathrm{~ms}^{-1}$ and retarding with $0.3 \mathrm{~ms}^{-2}$. The distance of vehicle after 1 minute from the traffic light is :-
(1) 25 m
(2) 375 m
(3) 360 m
(4) 40 m
42. A hollow cylindrical wire carries current I, having inner \& outer radius $\mathrm{R} \& 2 \mathrm{R}$ respectively magnetic field at a point which is $\frac{5 R}{4}$ distance away from the axis of wire :-
(1) $\frac{5 \mu_{0} \mathrm{I}}{18 \pi R}$
(2) $\frac{\mu_{0} I}{36 \pi R}$
(3) $\frac{5 \mu_{0} I}{36 \pi R}$
(4) $\frac{3}{40} \frac{\mu_{0} I}{\pi R}$
43. A particle of charge q and mass m starts moving from the origin under the action of an electric field $\overrightarrow{\mathrm{E}}=\mathrm{E}_{0} \hat{\mathrm{i}}$ and magnetic field $\overrightarrow{\mathrm{B}}=\mathrm{B}_{0} \hat{\mathrm{k}}$. Its velocity at $(x,-3,0)$ is $(6 \hat{i}+8 \hat{j})$. The value of x is :-
(1) $\frac{36 \mathrm{E}_{0} \mathrm{~B}_{0}}{\mathrm{qm}}$
(2) $\frac{25 m}{2 q E_{0}}$
(3) $\frac{50 \mathrm{~m}}{\mathrm{qE}_{0}}$
(4) $\frac{25 \mathrm{E}_{0} \mathrm{~B}_{0}}{\mathrm{~m}}$
44. According to de-Broglie, the de-Broglie wavelength for electron in an orbit of (radius $5.3 \times 10^{-11} \mathrm{~m}$) hydrogen atom is $1.1 \times 10^{-10} \mathrm{~m}$. The principle quantum number of this electron is :-
(1) 1
(2) 2
(3) 3
(4)
45.

The frequency of oscillation of the system shown in figure is :-
(1) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{4 \mathrm{~m}}}$
(2) $\frac{1}{2 \pi} \sqrt{\frac{4 \mathrm{k}}{\mathrm{m}}}$
(3) $\frac{1}{2 \pi} \sqrt{\frac{\mathrm{k}}{7 \mathrm{~m}}}$
(4) $\frac{1}{2 \pi} \sqrt{\frac{7 \mathrm{k}}{\mathrm{m}}}$
46. A spherical ball of radius $3 \times 10^{-4} \mathrm{~m}$ and density $10^{4} \mathrm{~kg} / \mathrm{m}^{3}$ falls freely under gravity through a distance h before entering a tank of water. If after entering the water the velocity of the ball does not change, then value of h is:-
(Viscocity of water is $\left.10^{-5} \mathrm{~N}-\mathrm{s} / \mathrm{m}^{2}\right)\left(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) $1.6 \times 10^{5} \mathrm{~m}$
(2) $1.6 \times 10^{7} \mathrm{~m}$
(3) $1.6 \times 10^{3} \mathrm{~m}$
(4) $1.6 \times 10^{4} \mathrm{~m}$
47. An astronomical telescope has an angular magnification of magnitude 5 for distant objects. The separation between the objective and eye-piece is 36 cm and the final image is formed at infinity. Determine the focal length of objective and eye-piece-
(1) $\mathrm{f}_{0}=30 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=6 \mathrm{~cm}$
(2) $\mathrm{f}_{0}=25 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=10 \mathrm{~cm}$
(3) $\mathrm{f}_{0}=30 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=10 \mathrm{~cm}$
(4) $\mathrm{f}_{0}=15 \mathrm{~cm}, \mathrm{f}_{\mathrm{e}}=5 \mathrm{~cm}$
48. Find tension T_{1} and T_{2} in the strings in the given diagram. Mass of the rod is M and length L while mass of the block is also M.

(l) $\mathrm{T}_{1}=\frac{3 \mathrm{Mg}}{4}, \mathrm{~T}_{2}=\frac{5 \mathrm{Mg}}{4}$
(2) $\mathrm{T}_{1}=\frac{5 \mathrm{Mg}}{4}, \mathrm{~T}_{2}=\frac{3 \mathrm{Mg}}{4}$
(3) $\mathrm{T}_{1}=\mathrm{Mg}, \mathrm{T}_{2}=\mathrm{Mg}$
(4) $\mathrm{T}_{1}=\frac{3 \mathrm{Mg}}{2}, \mathrm{~T}_{2}=\frac{\mathrm{Mg}}{2}$
49. Match column-I with column-II

Column-I		Column-II	
(A)	Wein's displacement law explains	(P)	Why days are hot and nights are cold in deserts
(B)	Planck's radiation law explains	(Q)	Why a blackened platinum wire when gradually heated, appears first dull red and then blue
(C)	Kirchoff's law explains	(R)	The distribution of energy in black body spectrum at shorter as well as longer wavelength

(1) (A) $\rightarrow \mathrm{P},(\mathrm{B}) \rightarrow \mathrm{R}(\mathrm{C}) \rightarrow \mathrm{Q}$
(2) $(\mathrm{A}) \rightarrow \mathrm{Q}(\mathrm{B}) \rightarrow \mathrm{P}(\mathrm{C}) \rightarrow \mathrm{R}$
(3) $(\mathrm{A}) \rightarrow \mathrm{P}(\mathrm{B}) \longrightarrow \mathrm{Q}(\mathrm{C}) \longrightarrow \mathrm{R}$
(4) (A) $\rightarrow \mathrm{Q}(\mathrm{B}) \rightarrow \mathrm{R}(\mathrm{C}) \rightarrow \mathrm{P}$
50. A long resonance tube contains air at a pressure of 1 atm and a temperature of $59^{\circ} \mathrm{C}$. A tuning fork near its open end is vibrating with a frequency of 500 Hz . Resonance is produced when the length of air column is $16 \mathrm{~cm}, 49.2 \mathrm{~cm}$ and 82.4 cm from open end. Molar mass of air is $28.8 \mathrm{~g} / \mathrm{mol}$. The speed of sound in air is :-
(1) $332 \mathrm{~m} / \mathrm{s}$
(2) $342 \mathrm{~m} / \mathrm{s}$
(3) $352 \mathrm{~m} / \mathrm{s}$
(4) $362 \mathrm{~m} / \mathrm{s}$

SAMPLE PAPER

SECTION-A (CHEMISTRY)

51.

(1) Yellow ppt
(2) White ppt
(3) Red ppt
(4) Violet ppt
52.

Product is :
(1)

(2)

(3)

(4)

53. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH}($ alc. $) \rightarrow$

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NC}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

Reaction is known as :
(1) Hoffman isocyanide test
(2) Hoffman bromamide reaction
(3) Carbyl amine reaction
(4) (1) and (3) both
54. Which of the following compound not prepared by sandmeyer reaction?
(1) Chlorobenzene
(2) Bromobenzene
(3) Benzonitrile
(4) Phenol
55. Which of the following is not a suitable reagent to convert Butane-2-one to butan-2-ol.
(1) LiAlH_{4}
(2) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
(3) NaBH_{4}
(4) $\mathrm{H}_{2} / \mathrm{Ni}, \Delta$
56. Which of the following is major product of dehydration of
(1)

(2)

(3)

(4)

57. Compound $\mathrm{P} \& \mathrm{Q}$ in the following sequence are :-

(1) Same compound
(2) Position isomers
(3) Metamers
(4) Functional group isomers
58. Which of the following is incorrect?
(1)

(2)

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{COOH}
$$

(3)

(4)

59. Identify product?
$\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow[\text { One equi }]{\mathrm{HI}}$?
(1) $\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{I}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{I}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
(3) $\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{I}$
(4) $\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
60. Victor mayer test is used to differentiate :-
(1) $1^{\circ}, 2^{\circ}$ and 3° Amines
(2) Aldehyde \& Ketones
(3) $1^{\circ}, 2^{\circ}$ and 3° Alcohols
(4) Phenol and ketone
61. Which of the following compound on reaction with Hinsberg reagent gives a product that is insoluble in sodium hydroxide ?
(1) Ethylamine
(2) Dimethylamine
(3) Aniline
(4) Trimethyl amine
62.

In the above reaction product A and B are :-
(1) Position isomers
(2) Identical
(3) Functional isomers
(4) Homologues
63. A solution contains I_{2} in benzene. The mole fraction of I_{2} is 0.2 . Calculate molarity of solution if density of solution is $\mathrm{dg} / \mathrm{mL}$.
(Molecular weight of $I_{2}=254 \mathrm{~g} / \mathrm{mol}$).
(1) 1.77 d
(2) 17.7 d
(3) 1.17 d
(4) 2.77 d
64. Find out maximum number of moles of CO_{2} obtained by decomposition of 200 g sample of $\mathrm{CaCO}_{3}\left(\mathrm{M}_{\mathrm{w}}=100 \mathrm{~g} / \mathrm{mol}\right)$ whose purity is 80%.
(1) 1 mol
(2) 1.6 mol
(3) 0.8 mol
(4) 1.2 mol
65. Number of de-Broglie waves in 4th orbit of hydrogen atom is :-
(1) 4
(2) 8
(3) 3
(4) 1
66. Assertion :- Oxidation of iron is given by
$4 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$ entropy change is $-549.4 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K}$ at 298 K . Hence, it is a nonspontaneous process.

Reason :- For a process to be spontaneous, $\Delta \mathrm{S}_{\text {total }} \& \Delta \mathrm{G}$ of a system should be positive \& negative respectively.
(1) Both Assertion \& Reason are True \& the Reason is a correct explanation of the Assertion.
(2) Both Assertion \& Reason are True but Reason is not a correct explanation of the Assertion.
(3) Assertion is True but the Reason is False.
(4) Assertion is false and Reason is true.
67.

Match the column :-

	Column-I		Column-II		
(i)	$\mathrm{NaCl}_{(\mathrm{s})} \rightarrow \mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\text {(aq) }}^{-}$			(p)	Enthalpy of
---	---	---	---	---	---
atomisation	$	$	(ii)	$\mathrm{NaCl}_{(\mathrm{s})} \rightarrow \mathrm{Na}_{(\mathrm{g})}^{+}+\mathrm{Cl}_{(\mathrm{g})}^{-}$	(q)
:---	:---	:---	:---		
(iii)	$\mathrm{Na}_{(\mathrm{s})} \rightarrow \mathrm{Na}_{(\mathrm{g})}$	(r)	Enthalpy of formation		
(iv)	$\left.\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(} \ell\right)$	(s)	Lattice enthalpy		

(1) (i)-q; (ii)-r ; (iii)-p, (iv)-q
(2) (i)-q; (ii)-s; (iii)-r, (iv)-p
(3) (i)-r; (ii)-s; (iii)- p , (iv)-q
(4) (i)-q; (ii)-s; (iii)-p, (iv)-r
68. Calculate the molar solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.10 M NaOH . The solubility product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is 2×10^{-15}.
(1) $2 \times 10^{-13} \mathrm{M}$
(2) $3.2 \times 10^{-8} \mathrm{M}$
(3) $5 \times 10^{-5} \mathrm{M}$
(4) $3 \times 10^{-17} \mathrm{M}$
69. 2 moles of AB_{3} was introduced in an evacuated vessel of 1 L capacity. At high temperature, the gas undergoes partial dissociation according to the equation
$2 \mathrm{AB}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{A}_{2}(\mathrm{~g})+3 \mathrm{~B}_{2}(\mathrm{~g})$
At equilibrium, the concentration of AB_{3} was found to be 1 M . What is the value of K_{C} ?
(1) $1.7 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(2) $6.75 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(3) $0.42 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(4) $27 \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
70. For a Bimolecular elementary reaction
$\mathrm{A}+\mathrm{B} \rightarrow$ Products, Rate $=\mathrm{PZ}_{\mathrm{AB}} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}$
(1) P is called probability factor.
(2) Z_{AB} represents collision frequency of reactants A \& B.
(3) $\mathrm{e}^{-\mathrm{E}_{\mathrm{a}} / R T}$ corresponds to the fraction of molecules that have energies equal to or greater than E_{a}.
(4) All are correct
71. A reaction $\mathrm{A} \rightarrow$ Product, which is of first order with respect to A has a rate constant of $6 \mathrm{~min}^{-1}$. If we start with $[\mathrm{A}]=0.5 \mathrm{M}$, when will $[\mathrm{A}]$ reach the value of 0.05 M ?
(1) 0.384 min
(2) 0.15 min
(3) 3 min
(4) 3.84 min
72. What weight of the non volatile solute urea needs to be dissolved in 100 g of water in order to decrease the vapour pressure of water by 25% ?
(1) 100 g
(2) 111.1 g
(3) 150 g
(4) 201.5 g
73. The emf of the cell $\mathrm{Zn}\left|\mathrm{Zn}^{+2} \| \mathrm{Ag}^{+}\right| \mathrm{Ag}$ is independent of :-
(1) The quantity of solution of $\mathrm{Zn}^{+2} \& \mathrm{Ag}^{+}$ions
(2) The molarity of Zn^{+2} ions in the solution
(3) Moles of Ag^{+}ions in unit volume
(4) Temperature
74. Ca and Ba ions are precipitated in fifth group as their :
(1) O^{-2}
(2) SO_{4}^{-2}
(3) CO_{3}^{-2}
(4) S^{-2}
75. On heating a small lump of borax, a glassy bead is obtained which contain :-
(1) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
(2) $\mathrm{NaBO}_{2} \& \mathrm{~B}_{2} \mathrm{O}_{3}$
(3) $\mathrm{Na}_{2} \mathrm{O}$
(4) $\mathrm{Na}_{2} \mathrm{~B}$
76. The energy required to completely separate one mole of a solid ionic compound into its gaseous constituent ions is called ?
(1) Hydration enthalpy
(2) Ionisation enthalpy
(3) Electron gain enthalpy
(4) Lattice energy
77. IUPAC symbols for the element which is having following configuration :
$[\mathrm{Rn}] 7 \mathrm{~s}^{2} 6 \mathrm{~d}^{0} 5 \mathrm{f}^{13}$
(1) Unq
(2) Unu
(3) Unt
(4) Unb
78. Which of the following order is correct?
(1) $\mathrm{N}^{-3}>\mathrm{O}^{-2}>\mathrm{Mg}^{+2}>\mathrm{F}^{-}$(Ionic radius)
(2) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}>\mathrm{C}\left(2^{\text {nd }}\right.$ I.P. $)$
(3) $\mathrm{S}>\mathrm{Se}>\mathrm{Te}>\mathrm{O}$ (Electron gain enthalpy)
(4) All
79. Which of the following is square planar ?
(1) SF_{4}
(2) CH_{4}
(3) XeF_{4}
(4) ClF_{3}
80. Which is the correct order of bond order?
(1) $\mathrm{N}_{2}>\mathrm{N}_{2}^{+}>\mathrm{N}_{2}^{-2}$
(2) $\mathrm{ClO}_{4}^{-}>\mathrm{SO}_{4}^{-2}>\mathrm{PO}_{4}^{-3}$
(3) $\mathrm{N}_{2}>\mathrm{O}_{2}>\mathrm{F}_{2}$
(4) All
81. Which is the correct order of solubility in water?
(1) $\mathrm{Na}_{2} \mathrm{~S}>\mathrm{Cu}_{2} \mathrm{~S}>\mathrm{ZnS}$
(2) $\mathrm{LiOH}<\mathrm{NaOH}<\mathrm{RbOH}<\mathrm{KOH}$
(3) $\mathrm{BeO}<\mathrm{MgO}<\mathrm{CaO}<\mathrm{SrO}$
(4) $\mathrm{CsF}<\mathrm{CsCl}<\mathrm{CsBr}<\mathrm{CsI}$
82. Statement-I : I_{3}^{-}ion is linear.

Statement-II : In I ${ }_{3}^{-}$ion, iodine is in 'sp' hybridised state.
(1) Both Statement I and Statement II are correct.
(2) Both Statement I and Statement II are incorrect.
(3) Statement I is correct and Statement II is incorrect
(4) Statement I is incorrect and Statement II is correct
83. Which of the following exhibit maximum ionic conductivity?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
(2) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}$
(3) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(4) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
84. Which one is most paramagnetic ?
(1) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$
(2) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
(3) $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(4) $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+2}$
85. What is the correct order of spin only magnetic moment of $\mathrm{Mn}^{+2}, \mathrm{Cr}^{+2} \& \mathrm{Ti}^{+2}$?
(1) $\mathrm{Mn}^{+2}>\mathrm{Ti}^{+2}>\mathrm{Cr}^{+2}$
(2) $\mathrm{Ti}^{+2}>\mathrm{Cr}^{+2}>\mathrm{Mn}^{+2}$
(3) $\mathrm{Mn}^{+2}>\mathrm{Cr}^{+2}>\mathrm{Ti}^{+2}$
(4) $\mathrm{Cr}^{+2}>\mathrm{Ti}^{+2}>\mathrm{Mn}^{+2}$

SECTION-B (CHEMISTRY)

86.

Find the correct statement
(1) Y gives orange ppt with 2, 4 D.N.P.
(2) Y give silver mirror test.
(3) Y can not react with NaHSO_{3}
(4) Y give red-brown ppt of $\mathrm{Cu}_{2} \mathrm{O}$ with benedict solution
87.

Product P, Q and R respectively.
(1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$
(3) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
(4) $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{CH}_{3} \mathrm{COCl}, \mathrm{CH}_{3} \mathrm{CHO}$
88.

Compound C is :-
(1)

(2)

(3)

(4)

89. Which reaction is not used for preparation of benzaldehyde?
(1)

(2)

(3)

(4)

90. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl} \xrightarrow[\mathrm{KCN}]{\mathrm{CuCN}} \mathrm{A} \xrightarrow[\Delta]{\mathrm{H}_{2} \mathrm{OH} \mathrm{H}^{\oplus}} \mathrm{B} \xrightarrow[\Delta]{\mathrm{NH}_{3}} \mathrm{C}$ product C is :-
(1) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$
(2) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$
(3) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(4) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN}$
91. $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\mathrm{CCl}_{4}]{\mathrm{Br}_{2}}$ Product Which of the following is incorrect?
(1) it involves cyclic bromonium ion formation
(2) reaction proceeds with anti addition
(3) this reaction acts as test of unsaturation
(4) no color changes of Bromine takes place.
92. Calculate the enthalpy change when 1 mol of water at $100^{\circ} \mathrm{C} \& 1$ bar pressure is converted to ice at $0^{\circ} \mathrm{C}$. Given the enthalpy of fusion of ice is $5.44 \mathrm{~kJ} / \mathrm{mol}$ and heat capacity of water is $4.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
(1) $-2.12 \mathrm{~kJ} / \mathrm{mol}$
(2) $-5.86 \mathrm{~kJ} / \mathrm{mol}$
(3) $-5.02 \mathrm{~kJ} / \mathrm{mol}$
(4) $-13 \mathrm{~kJ} / \mathrm{mol}$
93. How many statements given below are true ?
(a) The energy of an electron in a multi electron atom depends on its principle quantum number \& azimuthal quantum number.
(b) Energies of the orbitals in the same subshell decreases with increase in the atomic number.
$\mathrm{E}_{2 \mathrm{~s}}(\mathrm{H})>\mathrm{E}_{2 \mathrm{~s}}(\mathrm{Li})>\mathrm{E}_{2 \mathrm{~s}}(\mathrm{Na})>\mathrm{E}_{2 \mathrm{~s}}(\mathrm{~K})$
(c) Sodium has 10 core electrons
(d) The size, shape $\&$ energy of all 3 p orbitals are identical.
(e) If probability density $|\psi|^{2}$ is constant on a given surface, $|\psi|$ is also constant over the surface. The boundary surface for $|\psi|^{2} \&|\psi|$ are identical.
(f) There are two d-orbitals which do not have electron density along the axis.
(1) 2
(2) 1
(3) 5
(4) 6
94. Which of the following is not a disproportionation reaction.
(1) $\mathrm{P}_{4(\mathrm{~s})}+3 \mathrm{OH}_{(\mathrm{aq})}^{-}+3 \mathrm{H}_{2} \mathrm{O}(\ell) \rightarrow \mathrm{PH}_{3(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{PO}_{2(\mathrm{aq})}^{-}$
(2) $\mathrm{S}_{8(\mathrm{~s})}+12 \mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow 4 \mathrm{~S}_{(\mathrm{aq})}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{3(\mathrm{aq})}^{2-}+6 \mathrm{H}_{2} \mathrm{O}(\ell)$
(3) $\mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{OH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{ClO}_{(\mathrm{aq})}^{-}+\mathrm{Cl}_{(\mathrm{g})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\ell)}$
(4) $\mathrm{NaH}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightarrow \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}$
95. An electric current of 193 A is passed through molten sodium chloride for 5 hours. Calculate the moles of chlorine gas liberated at the electrode ?
(1) 18 mol
(2) 9 mol
(3) 27 mol
(4) 36 mol
96. Sodium nitropruside $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$ is used as reagent for detection of and the compound formed is :-
(1) $\mathrm{S}, \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NOS})\right]$
(2) $\mathrm{N}, \mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(3) $\mathrm{S}, \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{4}(\mathrm{NOS})\right]$
(4) $\mathrm{S}, \mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5}(\mathrm{NOS})\right]$
97. Which of the following pair has same bond order and same bond type?
(1) $\mathrm{C}_{2}, \mathrm{O}_{2}$
(2) B_{2}, F_{2}
(3) $\mathrm{N}_{2}, \mathrm{CO}(4) \mathrm{O}_{2}, \mathrm{C}_{2}$
98. Which compound is formed when excess of KCN is added to aqueous solution of copper sulphate?
(1) $\mathrm{Cu}(\mathrm{CN})_{2}$
(2) $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(3) $\mathrm{K}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
(4) $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
99. Which of the following complex exhibits cistrans isomerism ?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{3}$
(2) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
(4) All
100. Assertion: Cu^{+2} is more stable than Cu^{+}

Reason : E° is more important in determining stable O.S. than electronic configuration.
(1) Both Assertion and Reason are true but Reason is NOT the correct explanation of Assertion.
(2) Both Assertion and Reason are false.
(3) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
(4) Assertion is true but Reason is false.

SAMPLE PAPER

SECTION - A (BOTANY)

101. In taxonomic hierarchy, given below organisms are representative of how many families?

Wheat, Potato, Brinjal, Mango
(1) 2
(2) 3
(3) 4
(4) 1
102. ICBN stands for
(1) International classification of biological nomenclature.
(2) International class of biological nomenclature.
(3) International code of botanical nomenclature.
(4) International classification of biological naming.
103. The deuteromycetes reproduce by asexual spores known as \qquad .
(1) Conidia
(2) Zoospores
(3) Aplanospores
(4) Ascospores
104. Hydrocolloids are obtained from :-
(1) Porphyra
(2) Gelidium
(3) Spirogyra
(4) Ectocarpus
105. Which of the following statement is incorrect?
(1) After fertilization the ovule wall get transformed into pericarp
(2) Strawberry fruits are false fruits.
(3) Mango is drupe fruit.
(4) Mango fruit develop from monocarpellary superior ovary.
106. Which of the following set of plants shows perigynous flower?
(1) Mustard, China rose, Brinjal
(2) Rose, Plum, Peach
(3) Grapes, Apple, Sunflower
(4) Cucumber, Maize, Apple
107. Match the column I with column II and choose correct option :-

	Column-I		Column-II
(A)	Underground stem	(1)	Ashwagandha
(B)	Medicinal plant	(2)	Potato
(C)	Trilocular ovary with many ovules	(3)	Pea
(D)	Diadelphous stamens	(4)	Gloriosa

(1) A-2, B-1, C-4, D-3 (2) A-1, B-2, C-3, D-4
(3) A-4, B-3, C-2, D-1 (4) A-3, B-4, C-1, D-2
108. Given below two statements:

Statement - (I) : In dicots, direct elongation of the radicle leads to the formation of primary root.
Statement - (II) : Fibrous roots arise from the base of the stem.
(1) Both Statement I and Statement II are correct.
(2) Statement I is correct but Statement II is incorrect.
(3) Both Statement I and Statement II are incorrect.
(4) Statement I is incorrect but Statement II is correct.
109. The functions of sieve tubes are controlled by :-
(1) Nucleus of companion cells
(2) Nucleus of phloem parenchyma
(3) Nucleus of epidermal cells
(4) Nucleus of cells of secondary cortex
110. Which statement/s is/are correct about internal structure of dicot stem :-
(1) Hypodermis is collenchymatous
(2) Pericycle is found in patches located just above phloem bundles.
(3) The cells of endodermis are rich in starch grains
(4) All the above
111. Parenchyma cells are isodiametric and :-
(1) Thin walled
(2) Thick walled
(3) With lignified wall
(4) With suberized wall
112. Which statement is correct about T.S. of monocot root :-
(1) Sclerenchymatous pericycle is found in patches located just above the phloem bundles
(2) It has more than six xylem bundles
(3) It shows secondary growth
(4) Endodermis is rich in starch grains so, it is also termed as starch sheath
113. If a monochromatic light of blue colour is incident on different photosynthetic pigments, it will be absorbed maximum by the pigment :-
(1) Chlorophyll a
(2) Chlorophyll b
(3) Carotenoids
(4) Phycobilins
114. Assertion :- Protons or hydrogen ions that are produced by splitting of water accumulated within the lumen of thylakoids.
Reason :- Splitting of the water molecules takes place on the inner side of the membrane.
(1) Both Assertion and Reason are true and Reason is the correct explanation of Assertion.
(2) Assertion is true but Reason is false.
(3) Assertion is false but Reason is true.
(4) Both Assertion and Reason are true but Reason is NOT the correct explanation of Assertion.
115. Which of the metabolities is common to respiration mediated breakdown of fats, carbohydrates and proteins?
(1) Acetyl CoA
(2) Pyruvic acid
(3) DHAP
(4) 3 - PGAL
116. Substrate level phosphorylation (SLP) occurs during?
(1) Link reaction and Kreb's cycle
(2) Glycolysis only
(3) Link reaction and ETS
(4) Krebs cycle and glycolysis
117. The volatile substance is released from ripened oranges that \qquad A__ the ripening of stored unripened banana. It was identified as \qquad B__ .
(1) A-Reduced, B-Ascisic acid
(2) A-Hastened, B-Ethylene
(3) A-Stop, B-Auxin
(4) A-Hastened, B-Cytokinins
118. Growth of pollen tube is measured in terms of increase in its \qquad
(1) Length
(2) Surface area
(3) Volume
(4) Cell's size
119. The number of ovule/ovules in an ovary of wheat is:
(1) One
(2) Two
(3) Three
(4) Four
120. A typical angiosperm anther is
(1) Bilobed, dithecous, tetrasporangiate
(2) Bilobed, trithecous, tetrasporangiate
(3) tetralobed, dithecous, tetrasporangiate
(4) Bilobed, dithecous, bisporangiate
121. Which of the following is resistant to enzyme action?
(1) Pollen exine
(2) Leaf cuticle
(3) Cork
(4) Wood fiber
122. a is a good example of incomplete dominance and \underline{b} is a example of co-dominance.
(1) $a-$ shape of seed ; $b-A B O$ blood groups
(2) a - size of starch gain in pea; $\mathrm{b}-\mathrm{AB}$ blood group
(3) a - Human skin colour ; b - Sickle cell anaemia
(4) a - Coat colour in cattles; b-Flower colour in Mirabilis jalapa
123. The F_{2} generation offspring in a plant showing incomplete dominance exhibit
(1) Variable genotypic \& phenotypic ratio.
(2) A genotypic ratio of $1: 1$
(3) A phenotypic ratio of $3: 1$
(4) Similar phenotypic \& genotypic ratio of $1: 2: 1$
124. A family has 6 girls, probability of son at 7 th birth is-
(1) 50%
(2) 75%
(3) 25%
(4) 100%
125. Okazaki fragments are synthesized on
(1) Leading strand, towards fork
(2) Lagging strand, towards fork
(3) Leading strand, away from fork
(4) Lagging strand, away from fork
126. Which of the following are excellent candidates for species-specific, narrow spectrum insecticidal applications.
(1) Bacteria
(2) Baculoviruses
(3) Fungus
(4) None of these
127. $\mathrm{Nt}=\mathrm{N}_{0} \mathrm{e}^{\mathrm{rt}}$ this equation is a integral form of the exponential growth in this equation what is " r "?
(1) Population density after time t
(2) Population density at time zero
(3) Reproduction period
(4) Intrinsic rate of natural increase
128. Choose the incorrect statement :-
(1) Population ecology is an important area of ecology because it links ecology to population genetics and evolution.
(2) A population has certain attributes whereas, an individual organism does not.
(3) Individual has birth rate and death rate.
(4) Sex ratio is characteristic of a population.
129. Choose the incorrect statement?
(1) Interaction of biotic and abiotic components result in a physical structure that is characteristic for each type of ecosystem.
(2) In an ecosystem unidirectional movement of energy towards the higher trophic levels and its dissipation and loss as heat to the environment takes place.
(3) A constant input of solar energy is the basic requirement for any ecosystem to function and sustain.
(4) Primary productivity is defined as the rate of formation of new organic matter by consumer.
130. \qquad Showed that in his experiments, increased diversity contributed to higher productivity.
(1) Paul Ehrlich
(2) Robert May
(3) David Tilman
(4) Reiter
131. Which of the following was objective of world summit held in 2002 in South Africa?
(1) Protection of Stratospheric ozone
(2) Climate change
(3) Biodiversity conservation
(4) Sustainable development
132. Study the four statements (a-d) given below and select the two correct ones out of them :
(a) A lion eating a deer and a sparrow feeding on grain are ecologically similar in being predators..
(b) Predator star fish Pisaster helps in maintaining species diversity of some invertebrates.
(c) Predators ultimately lead to the extinction of prey species.
(d) Production of chemicals such as nicotine, strychnine by the plants are metabolic disorders. The two correct statements are :
(1) (a) and (b)
(2) (b) and (c)
(3) (c) and (d)
(4) (a) and (d)
133. If in a pond there are 50 fish last year and through reproduction 20 new fish are added, taking the current population to 70 , calculate the birth rate (in terms of offsprings per fishes per year)
(1) 0.4
(2) 0.1
(3) 0.2
(4) 0.5
134. Which one of the following is not step of decomposition?
(1) Fragmentation
(2) Humification
(3) Stratification
(4) Mineralisation
135. Combined diversity at all levels of biological organization was described by -
(1) Paul Ehrlich
(2) Edward Wilson
(3) Alexander von Humboldt
(4) Ernst Haeckel

SECTION - B (BOTANY)

136. Which of the following statement is true for both Dinoflagellates and slime moulds?
(1) Saprophytic protists
(2) Formation of red tides by rapid multiplication
(3) Formation of plasmodium
(4) Presence of membrane-bound organelles
137. Read the following example :-

Chara, Ectocarpus, Spirogyra,
Volvox, Polysiphonia, Porphyra

How many examples have chlorophyll 'a' and 'b'?
(1) Three
(2) Four
(3) Five
(4) Six
138. Which of the following family members have leaves with parallel venation?
(1) Liliaceae
(2) Malvaceae
(3) Solanaceae
(4) Fabaceae
139. Match the column-I with column-II and select correct option.

	Column-I		Column-II
(A)	Trimerous flower	(i)	Brinjal
(B)	Persistent calyx	(ii)	Sweet pea
(C)	Ornamental plant	(iii)	Onion
(D)	Stem tendril	(iv)	Grapevines

(1) A-iii, B-ii, C-iv, D-i (2) A-iii, B-i, C-ii, D-iv
(3) A-ii, B-iv, C-i, D-iii (4) A-iv, B-iii, C-i, D-ii
140. Choose the incorrect statement?
(1) The cells of permanent tissue generally do not divide further
(2) A simple tissue is made up of one type of cells
(3) The wall of parenchymatous cells are generally thick and made up of cellulose and lignin.
(4) Parenchymatous cells may either be closely packed or have small inter cellular space
141. Statement-I : The root hairs are unicellular elongations of the epidermis cells and help absorb water and minerals from the soil.

Statement-II : The trichomes in the root system are usually multicellular and they may be branched or unbranched and soft or stiff.
(1) Both Statement I and Statement II are incorrect.
(2) Statement I is true but Statement II is false
(3) Statement I is false but Statement II is true
(4) Both Statement I and Statement II are correct.
142. Which of the following statements regarding effect of temperature on photosynthesis is incorrect?
(1) Tropical plants have a higher temperature optimum than the plants adapted to temperate climates.
(2) The dark reaction being enzymatic are temperature controlled.
(3) The temperature optimum for photosynthesis of different plants also depends on the habitat that they are adapted to.
(4) The C_{3} plants respond to higher temperature and show high rate of photosynthesis.
143. Choose the correct answer to fill in the blank from the options given -
In ETS electrons from NADH produced in the mitochondrial matrix during citric acid cycle are oxidised by \qquad .
(1) Complex - III
(2) Complex - I
(3) Complex - IV
(4) Complex - II
144. Match the column-A with column-B :

	Column-A		Column-B
(a)	Pyruvic acid \rightarrow Lactic acid	(i)	Alcohol dehydrogenase
(b)	Pyruvic acid \rightarrow Acetaldehyde	(ii)	Lactate dehydrogenase
(c)	Acetaldehyde \rightarrow Ethanol	(iii)	Pyruvic acid Decarboxylase

(1) (a) - (ii), (b) - (iii), (c) - (i)
(2) (a) - (iii), (b) - (i), (c) - (ii)
(3) (a) - (i), (b) - (ii), (c) - (iii)
(4) (a) - (ii), (b) - (i), (c) - (iii)
145. Zeatin was extracted for the first time from -
(1) Maize
(2) Coconut
(3) Fungus
(4) Autoclaved herring sperm
146. Select incorrect statement?
(1) Cleistogamous flowers are invariably autogamous
(2) Self-incompatibility is an out breeding device
(3) Black pepper is an example of perispermic seed
(4) Pea \& groundnut are example of albuminous seeds
147. Assertion : Mendel obtained phenotypic ratio $9: 3: 3: 1$ in the dihybrid cross.
Reason : When two pairs of traits are combined in a hybrid, segregation of one pairs of character is independent of the other pair of character.
(1) Both assertion and reason are true and reason is the correct explanation of assertion.
(2) Assertion is true but reason is false
(3) Assertion is false but reason is true
(4) Both assertion and reason are true but reason is not the correct explanation of assertion.
148. (A) A gene is defined as the functional unit of inheritance.
(B) The DNA sequence coding for tRNA or r-RNA molecule define a gene.
(C) The exons are said to be those sequences that appear in mature or processed RNA
(D) Inheritance of a character is not affected by promoter and regulatory sequence of structural gene. Select the set of correct statements in given option :
(1) A, B and C
(2) B, C and D
(3) A, C and D
(4) A, B and D
149. It was George Gamow, a \qquad , who argued that since there are only 4 bases and if they have to code for \qquad amino acids, the code should constitute a combination of 3 bases.
Fill in the blanks, respectively :
(1) Physicist ; 20
(2) Biochemist; 20
(3) physicist ; 18
(4) geneticist ; 20
150. True for competition -
(1) Organisms having same niche live together for indefinite time period.
(2) Competitive release demonstrates occurence of competition in nature.
(3) During competition Chathamalus removes Balanus from intertidal region of Scotland.
(4) Gause's competitive exclusion principle is valid also when plenty of resources are present and organisms having different food habits.

SAMPLE PAPER

SECTION - A (ZOOLOGY)

151. In which of the following segmentation in the body is first observed?
(1) Aschelminthes
(2) Annelida
(3) Arthropoda
(4) Mollusca
152. Which are incorrect among the following :
(A) Poison sting in "Torpedo"
(B) Electric organ is found in "Trygon"
(C) Claspers present in "Scoliodon"
(D) Air bladder present in "Pristis"
(1) $\mathrm{A} \& \mathrm{~B}$
(2) $\mathrm{B} \& \mathrm{C}$
(3) $\mathrm{A}, \mathrm{B} \& \mathrm{C}$
(4) $\mathrm{A}, \mathrm{B} \& \mathrm{D}$
153. Mark the incorrect option about amphibians :-
(1) Skin is moist and glandular
(2) Cloaca is present
(3) Fertilisation is mainly external and development is indirect
(4) Eyes are without eyelids
154. The mast cells secrete the following substances:
(1) Heparin
(2) Histamine
(3) Serotonin
(4) All of the above
155. Which of the following statements is/are false about columnar epithelium ?
(A) It is made up of tall and slender cells
(B) Free surface may have mícrovilli
(C) They are found in stomach and intestine and help in secretion and absorption
(D) Ciliated epithelium is mainly present in hollow structures like bronchioles and fallopian tubes
(E) They have apical nuclei
(1) (A) only
(2) (E) only
(3) (B) and (D)
(4) (B) and (C)
156. How many of the following statements are correct :-
(A) Systemic circulation takes place between left ventricle and right atrium of heart
(B) Adrenal medullary hormones can decrease the cardiac output
(C) Heart failure is not the same as cardiac arrest or heart attack
(D) The opening between the right atrium and the right ventricle is guarded by a valve formed of two muscular flaps
(1) Two
(2) One
(3) Four
(4) Three
157. Trachea is a straight tube which divides into right and left bronchi at the level of :-
(1) $5^{\text {th }}$ cervical vertebra
(2) $5^{\text {th }}$ thoracic vertebra
(3) $5^{\text {th }}$ lumbar vertebra
(4) $1^{\text {st }}$ thoracic vertebra
158. Glomerulus along with Bowman's capsule is called:
(1) Renal corpuscle
(2) Malpighian tubule
(3) Malpighian body
(4) Both (1) \& (3)
159. Which of the following is/are characteristic of mammalian brain?
(1) Arachnoid layer
(2) Corpus albicans
(3) Corpora quadrigemina
(4) All of the above
160. Match the following columns :-

	Column-I		Column-II
(A)	Polarisation	(i)	$\Delta \mathrm{V}=-70 \mathrm{mv}$ opening of $\mathrm{K}^{+} \mathrm{VGC}$
(B)	Hyper polarisation	(ii)	$\Delta \mathrm{V}=+30 \mathrm{mv}$ outer membrane is negatively charged due to Na^{+}influx
(C)	Depolarisation	(iii)	$\Delta \mathrm{V}=-70 \mathrm{mv}$ opening of $\mathrm{Na}^{+}-\mathrm{K}^{+}$ pump and passive channels only
(D)	Repolarisation	(iv)	$\Delta \mathrm{V}=-90 \mathrm{mv}$ opening of $\mathrm{Cl}^{-} \mathrm{VGC}$ or $\mathrm{K}^{+} \mathrm{VGC}$ for long time

(1) A-iv
B-ii $\quad \mathrm{C}$-iii
D-i
(2) A-iii
B-iv
C-ii
D-i
(3) $\mathrm{A}-\mathrm{i} \quad \mathrm{B}-\mathrm{iii}$
C-ii
D-iv
(4) A-iii B-iv C-i D-ii
161. Pituitary gland is controlled by:
(1) Epithalamus
(2) Thalamus
(3) Hypothalamus
(4) Cerebrum
162. Find out the incorrect match from the following table

	Column-I	Column-II
(1)	Heart	Atrial natriuretic factor
(2)	Kidney	Erythropoietin
(3)	Gastro-intestinal tract	CCK
(4)	Ovary	oxytocin

163. Match the column-A with column-B :-

A		B	
A	Hypothalamus	(i)	Aldosterone
B	Parathyroid gland	(ii)	GnRH
C	Thyroid gland	(iii)	PTH
D	Zona glomerulosa	(iv)	Tetra-iodothyronine

(1) A-i, B-ii, C-iii, D-iv (2) A-ii, B-i, C-iii, D-iv
(3) A-ii, B-iii, C-iv, D-i (4) A-iii, B-i, C-ii, D-iv
164. Match the following-

A-Z-disc	$\mathrm{P}=$ contains only thin filament
B-I-Band	$\mathrm{Q}=$ separate two sarcomere
C-A-Band	$\mathrm{R}=$ Contains thick filaments no thin filament
D-H-Zone	$\mathrm{S}=$ Entire length of thick filament

(1) $\mathrm{A}=\mathrm{P}, \mathrm{B}=\mathrm{Q}, \mathrm{C}=\mathrm{R}, \mathrm{D}=\mathrm{S}$
(2) $\mathrm{A}=\mathrm{Q}, \mathrm{B}=\mathrm{P}, \mathrm{C}=\mathrm{S}, \mathrm{D}=\mathrm{R}$
(3) $\mathrm{A}=\mathrm{Q}, \mathrm{B}=\mathrm{R}, \mathrm{C}=\mathrm{P}, \mathrm{D}=\mathrm{S}$
(4) $\mathrm{A}=\mathrm{R}, \mathrm{B}=\mathrm{P}, \mathrm{C}=\mathrm{S}, \mathrm{D}=\mathrm{Q}$
165. Placenta is the region where :-
(1) Foetus is attached to myometrium of uterus.
(2) Foetus receives oxygen and nourishment from mother's blood.
(3) Foetus is covered by fetal membranes.
(4) Foetus is attached to mother by spermatic cord.
166. Assertion : Myometrium is essential for parturition.

Reason : Myometrium exhibits strong contractions during delivery of baby.
(1) Both assertion \& reason are true \& the reason is a correct explanation of the assertion.
(2) Both assertion \& reason are true but reason is not a correct explanation of the assertion.
(3) Assertion is true but the reason is false.
(4) Both assertion \& reason are false.
167. Assertion :- Saheli is a "once a week" pill with very few side effects and high contraceptive value.
Reason :- Saheli is the new oral contraceptive for the females and contains a non-steroidal preparation.
(1) Both Assertion \& Reason are True \& the Reason is a correct explanation of the Assertion.
(2) Both Assertion \& Reason are True but Reason is not a correct explanation of the Assertion.
(3) Assertion is True but the Reason is False.
(4) Both Assertion \& Reason are False.
168. Serum of any animal containing antibody for specific antigen is called :-
(1) Antibiotic
(2) Vaccine
(3) Anti-serum
(4) Agglutination
169. Given below are two statements -

Statement-I : Active immunity is fast and do not take time to give its full effective response.
Statement-II : The primary lymphoid organs are bone marrow and thyroid.
In the light of the above statements choose the most appropriate answer from the options given below :
(1) Both Statement-I and Statement-II are incorrect
(2) Statement-I is correct but Statement-II is incorrect
(3) Statement-I is incorrect but Statement-II is correct
(4) Both Statement-I and Statement-II are correct
170. Statement-I : Typhoid fever could be confirmed by widal test.

Statement-II : Salmonella typhi is pathogenic bacterium which cause typhoid fever in humans.
Which one of the following options is correct?
(1) Both Statement-I \& Statement-II are correct.
(2) Statement-I is correct \& Statement-II is incorrect.
(3) Statement-I is incorrect \& Statement-II is correct.
(4) Both Statement-I \& Statement-II is incorrect.
171. Fossils found in older rocks are of ?
(1) Complex types
(2) Mixed types
(3) Simpler types
(4) Advanced types
172. How many years ago Prehistoric cave art was developed?
(1) 12000 Years ago
(2) 15000 Years ago
(3) 18000 Years ago
(4) 10000 Years ago
173. Match the following:

	List-I		List-II
(A)	Cristae	(I)	Infoldings of plasma membrane in Bacteria
(B)	Cisternae	(II)	Disc-shaped sacs in Golgi apparatus
(C)	Mesosomes	(III)	Infolding in Mitochondria
(D)	Thylakoids	(IV)	Flat membranous sacs in stroma

(1) A-I, B-II, C-III, D-IV (2) A-III, B-IV, C-I, D-II
(3) A-II, B-III, C-I, D-IV (4)
4) A-III, B-II, C-I, D-IV
174. The names of different cell organelles / structures are given below -
Mitochondria, Cell wall, Ribosomes, Centrioles, Microbodies, Plastids, Endoplasmic Reticulum How many of the above are present in both higher plant and animal cells?
(1) 3
(2) 4
(3) 5
(4) 6
175. Identify the statements as true (T) or false (\mathbf{F})
(I) Cells actively involved in protein synthesis have larger and more numerous nucleoli along with RER
(II) Animal cells differ from plant cells in possessing a large central vacuole
(III) Lysosomes are reservoirs of hydrolytic enzymes (IV) Chromatin contains DNA and histones
(1) I-T II-F III-T IV-T
(2) I-F II-F III-T IV-T
(3) I-F II-T III-F IV-F
(4) I-T II-F III-F IV-T
176. Which of the following statements are not correct?
(A) Microbodies are present in both plant and animal cells.
(B) All chromosomes have a staining secondary constriction at constant location.
(C) Each centriole has an organisation like cartwheel in longitudinal section
(D) Matrix of mitochondria contains enzymes required for the synthesis of carbohydrate only.
(1) A only
(2) only B and C
(3) B, C and D
(4) A, B, C \& D
177. The given diagram illustrates a cell :

Which of the following statements regarding the image is false?
(1) The nuclear envelope is disappearing
(2) It is an animal cell
(3) It is in telophase
(4) The cell furrow is forming
178. Identify the given figures A and B :-

	A	B
(1)	Anaphase-I	Telophase-I
(2)	Anaphase-II	Anaphase-I
(3)	Metaphase-II	Metaphase-I
(4)	Anaphase-I	Mitotic anaphase

179. Below given structure represent amino acids what will be A, B and C

(A)

(B)

Glycine
Alanine
(1) $\mathrm{A}-\mathrm{H}, \mathrm{B}-\mathrm{CH}_{3}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$
(2) $\mathrm{A}-\mathrm{CH}_{3}, \mathrm{~B}-\mathrm{H}, \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}$
(3) $\mathrm{A}-\mathrm{CH}_{3}, \mathrm{~B}-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{C}-\mathrm{H}$
(4) $\mathrm{A}-\mathrm{CH}_{2} \mathrm{OH}, \mathrm{B}-\mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}$
180. Primary strucure of proteins are:
(1) Linear chains of amino acids
(2) Branched chains of amino acids
(3) Linear chains of simple sugars
(4) Branched chains of simple sugars
181. Given below are two statement: One is labelled as Assertion (A) and the other is labelled as Reason(R).
Assertion (A) : Polysaccharides are non - reducing sugar.
Reason (R) : The acid insoluble pellet has polysaccharides.
In the light of above statement, choose the most appropriate answer from the option given below.
(1) Both (A) and (R) are correct and (R) is the correct explanation of (A).
(2) Both (A) and (R) are correct but (R) is not the correct explanation of (A).
(3) (A) is correct but (R) is not correct.
(4) (A) is not correct but (R) is correct.
182. Which of the following is not the application of PCR?
(1) Detection of very low concentration of bacteria or virus
(2) Detection of mutations in genes in suspected cancer patients
(3) Amplification of desired DNA segment
(4) Detection of antibodies synthesised against pathogens
183. Read the following statement

Statement I :- RNAi takes place in all eukaryotic organism as a method of cellular defense.
Statement II :- Strains of Bacillus thuringiensis produce protein that kill all the types of Bacteria.
(1) Statement-I and statement-II both are true
(2) Statement-I is true and statement-II is false
(3) Statement-I is false and statement-II is true
(4) Statement-I and statement-II both are false
184. The experimental manipulation of DNA of different species and producing recombinant DNA is known as :-
(1) Electrophoresis
(2) Recombinant DNA technology
(3) Transformation
(4) Somatic hybridization
185. Arrange the steps of rDNA technology in correct order:-
I. Extraction of the desired gene product.
II. Amplification of gene of interest.
III. Isolation of desired DNA fragment.
IV. Ligation of DNA fragment into vector.
V. Insertion of rDNA into host.

Correct order is :-
(1) I, II, III, IV, V
(2) V, IV, III, II, I
(3) III, II, IV, V, I
(4) III, IV, II, I, V

SECTION - B (ZOOLOGY)

186. What happens when DNA fragment is inserted into plasmid pBR322 using enzyme Pvu-I or Pst-I ?
(a) Inactivation of $\mathrm{amp}^{\mathrm{R}}$ gene
(b) Inactivation of tet^{R} gene
(c) Recombinants are unable to grow in presence of ampicilin
(d) Recombinants are unable to grow in presence of tetracycline
(e) Unable to replicate
(1) $\mathrm{b} \& \mathrm{~d}$ are correct
(2) $\mathrm{a} \& \mathrm{c}$ are correct
(3) a c \& e are correct
(4) $\mathrm{b}, \mathrm{d} \& \mathrm{e}$ are correct
187. How many animals in the list given below have radial symmetry :
Obelia, Sponge, Leucosolenia, Aurelia, Pleurobranchia, Fasciola, Ascaris, Earthworm, Pila, Larva of star fish.
(1) Two
(2) Three
(3) Five
(4) Four
188. Which of the cells are cartilage destroying cells?
(1) Chondroblast
(2) Osteoblast
(3) Osteoclast
(4) Chondroclast
189. Which of the following structure is responsible for delay of 0.1 sec during the conduction of impulse of heart
(1) S.A. node
(2) A.V. node
(3) Bundle of His
(4) Purkinje's fibre
190. Which statement is incorrect regarding first heart sound?
(1) It is produced at the beginning of ventricular systole
(2) It is associated with the closure of the tricuspid and bicuspid valves
(3) It is called "LUBB"
(4) It is high pitch sound for short period
191. In breathing movements, air volume can be estimated by :
(1) Stethoscope
(2) Hygrometer
(3) Sphignomanometer
(4) Spirometer
192. Fibres which transmit impulse from body organ to brain are called :-
(1) Efferent fibre
(2) Afferent fibre
(3) Motor fibre
(4) Longitudinal fibre
193. Identify the given diagram :

(1) Sectional view of seminiferous tubule
(2) Sectional view of male primary sex organ
(3) Sectional view of female primary sex organ
(4) Sectional view of spermatozoâ
194. Consider the following four statements (a-d) and select the option which includes all the incorrect ones only.
(a) Each testicular lobule contains 750 highly coiled seminiferous tubules, in which sperms are produced
(b) Sertoli cells undergo meiotic divisions finally leading to sperm formation
(c) The regions outside the seminiferous tubules called interstitial spaces, contain small blood vessels, Leydig cells, and some immunologically competent cells.
(d) The scrotum helps in maintaining the low temperature of the testes, necessary for spermatogenesis
(1) Statements (b), (c) and (d)
(2) Statements (a), (b)
(3) Statements (a), (b) and (c)
(4) Statements (a), (c) and (d)
195. Which one of the following is not included in innate immunity?
(1) Mucosa
(2) Secretions
(3) Cytokines
(4) Lymphocytes
196. Identify the correct answer with respect to RNA interference (RNAi) :-
(P) It is an event of post transcriptional gene silencing.
(Q) It works through RNA induced silencing complex.
(1) P only
(2) Both P and Q
(3) Neither P nor Q
(4) Q only
197. Which one in not a restriction enzyme ?
(1) EcoRI
(2) Cellulase
(3) Hind III
(4) EcoRV
198. Which of the following statement is correct in the context of observing DNA fragments separated by agarose gel electrophoresis?
(1) DNA can be seen in visible light
(2) DNA can be seen without staining in visible light
(3) Ethidium bromide stained DNA can be seen in visible light
(4) Ethidium bromide stained DNA can be seen under exposure to UV light
199. DNA fragments separated by gel electrophoresis are shown. Mark the correct statement :-

(1) Band ' 3 ' contains more positively charged DNA molecule than ' 1 '
(2) Band '3' has longer DNA fragment than ' 1 ' and '2'
(3) Band ' 1 ' has longer DNA fragment than '2' and '3'
(4) All the bands have equal length and charges but differ in base composition
200. In gel-electrophoresis, all the DNA fragment move towards the base of the gel with variable velocities because :-
(1) DNA is positively charged
(2) DNA is double stranded
(3) DNA fragments have different molecular weights
(4) Both 2 and 3
