ANSWERKEY \& SOLUTIONS

Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	B	A	A	D	A	D	B	B	C	D	B	C	D	B	C	A	B	A	B	D
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	B	D	D	A	C	A	A	A	A	D	B	B	A	C	A	B	C	B	C	D
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	C	C	B	C	C	C	D	B	D	A	C	C	D	D	B	D	B	C	D	D
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	A	B	A	B	D	A	C	B	D	A	B	D	D	A	B	B	C	A	A	A
Q.No.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	B	A	D	C	B	C	A	A	A	C	C	C	A	C	D	D	D	C	C	A
Q.No.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	D	A	A	C	B	D	B	B	D	C	A	B	B	A	D	A	A	C	A	B
Q.No.	121	122	123	124	125	126	127	128	129	130										
Ans.	D	B	D	B	A	D	C	B	A	A										

1. Ans. (B)
2. Ans. (A)

A cavity behaves somewhat like a black body, and has greater emissivity than the rest of the wood, at the same temperature.
3. Ans. (A)
4. Ans. (D)
$\mathrm{U}=\frac{\mathrm{nfRT}}{2}=\frac{\mathrm{nfN}_{\mathrm{A}} \mathrm{kT}}{2}$

$$
\frac{2 \mathrm{U}}{\mathrm{fkT}}=\mathrm{nN}_{\mathrm{A}}=\mathrm{N}
$$

5. Ans. (A)
6. Ans. (D)
7. Ans. (B)

$\mathrm{T}_{2}>\mathrm{T}_{1}$
$\mathrm{PV}=\mathrm{nRT}=$ constant
$\mathrm{n}_{1} \mathrm{~T}_{1}=\mathrm{n}_{2} \mathrm{~T}_{2}$
$\mathrm{n}_{1}<\mathrm{n}_{2}$
8. Ans. (B)
9. Ans. (C)
10. Ans. (D)
11. Ans. (B)
12. Ans. (C)
13. Ans. (D)
$\mathrm{d}=\lambda_{\mathrm{d}}=\frac{\mathrm{h}}{\mathrm{p}}=\frac{\mathrm{h}}{\mathrm{mv}}$
$\mathrm{d}=\frac{\mathrm{h}}{\left[\rho \cdot \frac{4}{3} \pi\left(\frac{\mathrm{~d}}{2}\right)^{3}\right] \times(\sqrt{2 \mathrm{gd}})}$
$\mathrm{d}=\left(\frac{18 \mathrm{~h}^{2}}{\pi^{2} \rho^{2} \mathrm{~g}}\right)^{1 / 9}$
14. Ans. (B)

Maximum KE of photoelectron
$\frac{1}{2} \mathrm{mv}_{\max }^{2}=\frac{\mathrm{hc}}{\lambda}-\phi$
$\Rightarrow \mathrm{v}_{\max }=\sqrt{\frac{2}{\mathrm{~m}}\left(\frac{\mathrm{hc}}{\lambda}-\phi\right)}$
$=\sqrt{\frac{2}{9 \times 10^{-31}}\left(\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{3300 \times 10^{-10}}-2.5 \times 1.6 \times 10^{-19}\right)}$
$=\sqrt{\frac{4}{9} \times 10^{12}}=\frac{2}{3} \times 10^{6} \mathrm{~ms}^{-1}$

Now $\operatorname{Bev}_{\max }=\frac{\mathrm{Mv}_{\max }^{2}}{\mathrm{R}_{\max }}$
$\Rightarrow \mathrm{e}=\frac{\mathrm{Mv}_{\max }}{\mathrm{BR}_{\max }}=\frac{9 \times 10^{-31} \times \frac{2}{3} \times 10^{6}}{6.7 \times 10^{-6} \times 0.5}$
$=1.8 \times 10^{-19} \mathrm{C}$
15. Ans. (C)

From Bohr model

$$
\frac{1}{\lambda}=\mathrm{R}\left(\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right)
$$

$$
\begin{align*}
& \frac{1}{\lambda_{1}}=\mathrm{R}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5}{36} \mathrm{R} \ldots \ldots \text { (i) and } \\
& \frac{1}{\lambda_{2}}=\mathrm{R}\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)=\frac{3}{4} \mathrm{R} \quad \ldots \ldots . \text { (ii) }
\end{align*}
$$

Dividing eq. (i) and (ii), we get $\frac{\lambda_{1}}{\lambda_{2}}=\frac{27}{5}$
16. Ans. (A)
$\sqrt{\mathrm{f}}=(\mathrm{Z}-\mathrm{b})\left(1-\frac{1}{\mathrm{n}^{2}}\right)^{1 / 2}$
17. Ans. (B)

Mass of $1 \mathrm{~m}^{3}$ volume $=1000 \mathrm{~kg}$
from equation of continuity
$\mathrm{A}_{\mathrm{Q}}=3 \mathrm{~A}_{\mathrm{P}}$
$\mathrm{V}_{\mathrm{Q}} \mathrm{A}_{\mathrm{Q}}=\mathrm{A}_{\mathrm{P}} \mathrm{V}_{\mathrm{P}}$
$\mathrm{V}_{\mathrm{Q}} 3 . \mathrm{A}_{\mathrm{P}}=\mathrm{A}_{\mathrm{P}}(3)$
$\mathrm{V}_{\mathrm{Q}}=1 \mathrm{~m} / \mathrm{s}$
A change is in P.E $=1000 \times 10 \times \frac{1}{2}=5000 \mathrm{~J}$
change in $\mathrm{K} . \mathrm{E}=\frac{1}{2} \times 1000\left(3^{2}-1^{2}\right)=4000 \mathrm{~J}$
Net workdone by pressure $=1000 \mathrm{~J} / \mathrm{m}^{3}$
18. Ans. (A)
19. Ans. (B)

Both capacitors are in parallel
20. Ans. (D)
$\mathrm{B}=\frac{\mu_{0} \mathrm{NiR}^{2}}{2\left(\mathrm{R}^{2}+\mathrm{x}^{2}\right)^{3 / 2}}$

$$
\left.\mathrm{B}_{\max } \Rightarrow \mathrm{x}_{\min }=0\right]
$$

21. Ans. (B)
22. Ans. (D)
23. Ans. (D)
$E=\frac{d \phi}{d t}, \phi=B \pi r^{2}$ and $\frac{d r}{d t}=$ constant so E is constant
24. Ans. (A)

The flux through loop $=\phi=\mathrm{B}\left(1 / 2 \mathrm{r}^{2} \theta\right)$
\therefore Induced emf in loop $=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{1}{2} \operatorname{Br}^{2} \omega$

$\because \omega=$ constant, emf shall be constant in magnitude.
Since magnetic flux increases for halfcycle and decreases for the other half. Hence emf changes sign every half cycle.
\therefore The correct graph is

25. Ans. (C)
26. Ans. (A)
27. Ans. (A)

$\mathrm{dR}=\frac{\rho \mathrm{dr}}{2 \pi \mathrm{rt}}$ (All in series)
$\therefore \mathrm{R}=\int_{\mathrm{a}}^{\mathrm{b}} \frac{\rho \mathrm{dr}}{2 \pi \mathrm{rt}}=\frac{\rho}{2 \pi \mathrm{t}} \ell \mathrm{n}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)$.
28. Ans. (A)

Current won't pass through
$4 \Omega \& 6 \Omega$
so $\mathrm{P}=\frac{(30)^{2}}{3}=300 \mathrm{~W}$
$\mathrm{I}=\frac{30}{3}=10 \mathrm{~A}$
29. Ans. (A)
$\frac{d^{2} x}{{d t^{2}}^{2}}=k x ; \frac{d^{2} x}{{d t^{2}}^{2}}=-\infty^{2} x$
$\infty^{2}=\mathrm{k} ; \infty=\sqrt{\mathrm{k}} ; \mathrm{T}=\frac{2 \pi}{\infty}=\frac{2 \pi}{\sqrt{\mathrm{k}}}$
30. Ans. (D)

$\mathrm{mg}-\mathrm{N}_{1}=\mathrm{m} \omega^{2} \mathrm{~A}$
$\mathrm{N}_{2}-\mathrm{mg}=\mathrm{m} \omega^{2} \mathrm{~A}$
$N_{1}=m g-m \omega^{2} A$
$N_{2}=m g+m \omega^{2} A$
$\mathrm{N}_{1}=600-60 \times 16 \times \frac{1}{10}$

$$
=536 \mathrm{~N} \Rightarrow \mathrm{~m}=53.6 \mathrm{~kg}
$$

$\mathrm{N}_{2}=600+64=664 \Rightarrow \mathrm{~m}=66.4 \mathrm{~kg}$
31. Ans. (B)
32. Ans. (B)
33. Ans. (A)
34. Ans. (C)
35. Ans. (A)
36. Ans. (B)
37. Ans. (C)
38. Ans. (B)
39. Ans. (C)
40. Ans. (D)
41. Ans.(C)
42. Ans.(C)
43. Ans.(B)
44. Ans. (C)
45. Ans.(C)
46. Ans. (C)
47. Ans.(D)
48. Ans.(B)
49. Ans. (D)
50. Ans.(A)
51. Ans.(C)
52. Ans.(C)
53. Ans. (D)
54. Ans. (D)
55. Ans. (B)
56. Ans. (D)
57. Ans. (B)
58. Ans. (C)
59. Ans. (D)
60. Ans. (D)
61. Ans. (A)

Explanation: There are few exceptions in using the comparative degree of adjectives, where 'to' is used instead of 'than'. These adjectives end with '-ior' such as: Senior, junior, superior, inferior, interior, posterior, prior. Hence Option A is the answer.
62. Ans. (B)

Explanation: Comparative degree of adjective (-er; smarter) is not used while comparing traits of the same person or thing. Instead we use more+positive degree (more smart). Hence Option B is the answer.
63. Ans. (A)

Explanation: The phrasal verb called away means to ask someone to leave a place, and called off on the other hand means to cancel or abandon. So according to the question the correct answer will be Option A.
64. Ans. (B)

Explanation: The word snarl means to say something in an angry, bad-tempered voice. In the sentence it is used as a phrasal verb; snarled on does not means anything, so snarled up will be the correct answer that means a disorganized situation such as a traffic jam.
65. Ans. (D)

Explanation: According to the given passage the correct answer to the question will be option D only.
66. Ans. (A)

Explanation: According to the given passage the correct answer to the question will be option A only.
67. Ans. (C)

Explanation: According to the given passage the correct answer to the question will be option C only.
68. Ans. (B)

Explanation: According to the given passage the correct answer to the question will be option B only.
69. Ans. (D)

Explanation: The one word used for a great work of art is Magnum Opus.
70. Ans. (A)

Explanation: Arrangement in option A gives meaning to the passage.
71. Ans. (B)

Explanation: The given figure contains numbers 1 to 6 in three alternate segments, the smaller number towards the outside and the numbers 14 to 19 in the remaining three alternate segments with smaller numbers towards the inside. Therefore option B is correct.
72. Ans. (D)

Explanation:

73. Ans. (D)

Explanation: The third figure in each row is the combination of the first two. Therefore option D is correct.
74. Ans. (A)
75. Ans. (B)

Explanation: The logic of the given series is as follows:
$1,13-1,2,23-1,3,33-1,4,43-1$
Therefore option B is correct.
76. Ans. (B)

Explanation: Add up the four outer numbers and place your answer in the centre square of the shape one place clockwise. Therefore option B is correct.
77. Ans. (C)
78. Ans. (A)
79. Ans. (A)

Explanation: Except February, all other months have 31 days. Therefore option A is correct.
80. Ans. (A)

Explanation: Pragmatic is an antonym for quixotic, and clear is an antonym for murky. Therefore option A is correct.
81. Ans. (B)
82. Ans. (A)

Hence the common face with 5 dots are in the square positions. Hence 1 dot is opposite to 2 dots.
83. Ans. (D)

Position ofO $=15$
Position of $\mathrm{X}=24$
$\Rightarrow \mathrm{OX}=15+24=39$
Hence LION $=12+9+15+14=50$
84. Ans. (C)

By observation. is leap year century divisible by 400
85. Ans. (B)

No. of cubes with two surfaces painted
$=$ No. of cubes present at the corners + no. of cubes present at 4 edges
$=8+(n-2) 4=8+8=16$
86. Ans. (C)
by observation
87. Ans. (A)
between 2 o'clock to 4 o'clock - 3 times between 4 o'clock to 8 o'clock - 8 times between 8 o'clock to 10 o'clock- 3 times Total - 14 times
88. Ans. (A)

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{\mathrm{OB}^{2}+\mathrm{OA}^{2}} \\
& =\sqrt{(300)^{2}+(400)^{2}}=\sqrt{250000} \\
& =500 \mathrm{~km}
\end{aligned}
$$

C being in the midway of AB , so $\mathrm{BC}=250 \mathrm{~km}$
89. Ans. (A)
$4+9=13$
$13+9=22$
$22+13=35$
$35+22=57$
90. Ans. (C)

Sanjay is new position from left is 22 nd but it is the same as Rohit's earlier position which is 12th fromright.
\Rightarrow no. of persons in a row
$=22+12-1$
$=33$
91. Ans. (C)

Let $2^{x}=y$, then $6^{\text {th }}$ term is
${ }^{8} \mathrm{C}_{5}\left(\left(\mathrm{y}^{2}+5\right)^{1 / 3}\right)^{8-5}\left(\frac{1}{(y+1)^{1 / 5}}\right)^{5}=168$
$\Rightarrow \quad \frac{8 \times 7 \times 6}{3!}\left(\frac{y^{2}+5}{y+1}\right)=168 \Rightarrow \frac{y^{2}+5}{y+1}=3$
$\Rightarrow \quad y^{2}-3 y+2=0 \quad \Rightarrow \quad y=1,2$
$\Rightarrow \quad 2^{\mathrm{x}}=1=2^{0} \quad \Rightarrow \mathrm{x}=0$
$2^{\mathrm{x}}=2=2^{1} \quad \Rightarrow \quad \mathrm{x}=1$
92. Ans. (C)

Let $\vec{a}=2 x \hat{i}+x \hat{j}+z \hat{k}$
$\sqrt{5 \mathrm{x}^{2}+\mathrm{z}^{2}}=5 \sqrt{2}$

Also, $\cos 135^{\circ}=\frac{\mathrm{z}}{\sqrt{5 \mathrm{x}^{2}+\mathrm{z}^{2}}}$
$=\frac{\mathrm{z}}{5 \sqrt{2}}=-\frac{1}{\sqrt{2}}$
$\Rightarrow z=-5$, then $x=\sqrt{5}$,
The required vector
$\overrightarrow{\mathrm{a}}=2 \sqrt{5} \hat{\mathrm{i}}+\sqrt{5} \hat{\mathrm{j}}-5 \hat{\mathrm{k}}$
93. Ans. (A)

Common chord $=$ diameter of second circle
$=2 \sqrt{(-1)^{2}+(-2)^{2}-(-11)}=8$
then area $=\frac{\sqrt{3}}{4}(8)^{2}=16 \sqrt{3}$ sq. units.
94. Ans. (C)

Cubing the equation $\sin x+\operatorname{cosec} x=2$
$\Rightarrow \sin ^{3} \mathrm{x}+\operatorname{cosec}^{3} \mathrm{x}+$ $3 \sin x \operatorname{cosec} x(\sin x+\operatorname{cosec} x)=8$
$\Rightarrow \sin ^{3} \mathrm{x}+\operatorname{cosec}^{3} \mathrm{x}+3(2)=8$
$\Rightarrow \sin ^{3} \mathrm{x}+\operatorname{cosec}^{3} \mathrm{x}=2$
95. Ans. (D)

Let $f^{\prime}(\mathrm{x})=3 \mathrm{ax}^{2}-4 \mathrm{bx}+\mathrm{c}$
$\Rightarrow f(\mathrm{x})=\mathrm{ax}^{3}-2 \mathrm{bx} \mathrm{x}^{2}+\mathrm{cx}+\mathrm{d}$
Now $f(0)=f(1) \& f(\mathrm{x})$ is continuous in $[0,1]$ and differentiable in $(0,1)$. So, by Rolle's theorem, $3 a^{2}-4 b x+c=0$ has atleast one root between 0 and 1 .
96. Ans. (D)

We have $\mathrm{a}_{1}+\mathrm{a}_{5}+\mathrm{a}_{10}+\mathrm{a}_{15}+\mathrm{a}_{20}+\mathrm{a}_{24}=225$
$\Rightarrow\left(\mathrm{a}_{1}+\mathrm{a}_{24}\right)+\left(\mathrm{a}_{5}+\mathrm{a}_{20}\right)+\left(\mathrm{a}_{10}+\mathrm{a}_{15}\right)=225$
$\Rightarrow 3\left(\mathrm{a}_{1}+\mathrm{a}_{24}\right)=225$
$\left(\because\right.$ in an A.P. $\mathrm{n}^{\text {th }}$ term from beginning + $\mathrm{n}^{\text {th }}$ term from end $=$ first term + last term)
$\Rightarrow \mathrm{a}_{1}+\mathrm{a}_{24}=75$
$\therefore \mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots \ldots .+\mathrm{a}_{23}+\mathrm{a}_{24}$
$\Rightarrow\left(\mathrm{a}_{1}+\mathrm{a}_{24}\right)+\left(\mathrm{a}_{2}+\mathrm{a}_{23}\right)+\left(\mathrm{a}_{3}+\mathrm{a}_{22}\right)+$
$+\left(\mathrm{a}_{12}+\mathrm{a}_{13}\right)$
$\Rightarrow 12\left(\mathrm{a}_{1}+\mathrm{a}_{24}\right)=12.75 \quad$ from (1)

$$
=900
$$

97. Ans. (D)

Length of tangent = length of subnormal
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}= \pm 1$
If $\frac{d y}{d x}=1$, then equation of tangent at $(3,4)$ is
$y-4=x-3 \Rightarrow y=x+1$ which cuts coordinate axes at $(0,1) \quad \&(-1,0)$

If $\frac{d y}{d x}=-1$, then equation of tangent at $(3,4)$ is
$y-4=-(x-3)$ or $x+y=7$
which cuts positive coordinate axes at $\mathrm{A}(7,0)$ and $\mathrm{B}(0,7)$
$\therefore \quad$ Area of $\triangle \mathrm{OAB}=\frac{1}{2} \cdot 7.7=\frac{49}{2}$
98. Ans. (C)

If one root is $2 i$ then other root is $-2 i$
$\therefore \quad$ sum of the roots $=0$
$\Rightarrow \quad-\mathrm{B} / \mathrm{A}=0 \Rightarrow \mathrm{~B}=0$
$\therefore \quad \mathrm{B}^{3}\left(\mathrm{~A}^{3}-\mathrm{C}^{3}\right)=0$.
99. Ans. (C)

Length of normal
$=y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=a(1-\cos t) \sqrt{1+\tan ^{2} \frac{t}{2}}$
$=a\left(2 \sin ^{2} \frac{t}{2}\right)\left(\sec \frac{t}{2}\right)=2 a \sin ^{2} \frac{t}{2} \sec \frac{t}{2}$
100. Ans. (A)

Since $f(x+1)-f(x)$
$=(x+1+c)-(x+c)=1$
$f(1), f(2), f(3), \ldots, f(n)$ is A.P.
with common difference equal to 1 .

$$
\begin{align*}
& \sum_{x=1}^{n} f(x)=\sum_{x=1}^{n}(x+c)=\sum_{x=1}^{n} x+c \sum_{x=1}^{n} \tag{1}\\
& =\frac{n(n+1)}{2}+n c=\frac{n(n+2 c+1)}{2} .
\end{align*}
$$

101. Ans. (D)

Let T is point of contact power of point
$=$ TA. TB $=2.2=2 \mathrm{x} .2 \mathrm{y}$
$\Rightarrow \quad x y=1$
we have to find

$\pi\left[(x+y)^{2}-x^{2}-y^{2}\right]=\pi[2 x y]=2 \pi$
102. Ans. (A)

If $x^{2}+a x+b=0 ; x^{2}+b x+c=0 ; x^{2}+c x$ $+\mathrm{a}=0$ have the roots $(\alpha, \beta),(\beta, \gamma) \&(\gamma, \alpha)$ respectively then
$\alpha \beta=\mathrm{b}, \quad \beta \gamma=\mathrm{c}, \quad \gamma \alpha=\mathrm{a}$
$\alpha^{2} \beta^{2} \gamma^{2}=a b c \quad \Rightarrow \quad \alpha \beta \gamma= \pm \sqrt{\mathrm{abc}}$
103. Ans. (A)

Let $\frac{p}{q}$ be one of the roots (where $p \& q$ are relatively prime numbers)
$\Rightarrow \quad \frac{\mathrm{p}^{3}}{\mathrm{q}^{3}}-\frac{3 \mathrm{p}}{\mathrm{q}}+1=0$
$\Rightarrow \quad \mathrm{p}^{3}-3 \mathrm{pq}^{2}+\mathrm{q}^{3}=0$
$\Rightarrow \quad \mathrm{q}^{3}=\mathrm{p}\left(3 \mathrm{q}^{2}-\mathrm{p}^{2}\right)$
$\Rightarrow \quad \frac{q^{3}}{p}=3 q^{2}-p^{2}$
Since p \& q are relatively prime numbers
$\therefore \quad$ RHS is always an integer
$\therefore \quad \mathrm{p}=1$
$\Rightarrow \quad q^{3}=q^{2}-1$
$\Rightarrow \quad q^{2}(q-3)=-1$
$q^{2}=1 \& q-3=1$
or $q^{2}=-1 \& q-3=1$
$\mathrm{q}= \pm 1 \quad \mathrm{q}=4$
Not possible
$\therefore \quad$ No value of q
Hence given equation does not have any rational root.
104. Ans. (C)
$\mathrm{z}+\frac{1}{\mathrm{z}}=\mathrm{w}+\frac{1}{\mathrm{w}}$
$\Rightarrow \mathrm{z}-\mathrm{w}=\frac{\mathrm{z}-\mathrm{w}}{\mathrm{zw}}$
$\Rightarrow \mathrm{z}=\mathrm{w}$ or $\mathrm{zw}=1$
Similarly

$$
\begin{align*}
& \mathrm{z}+\frac{1}{\mathrm{w}}=\mathrm{w}+\frac{1}{\mathrm{z}} \Rightarrow \mathrm{z}-\mathrm{w}=\frac{(\mathrm{z}-\mathrm{w})}{-\mathrm{zw}} \\
& \Rightarrow \mathrm{z}=\mathrm{w} \text { or } \mathrm{zw}=-1 \tag{ii}
\end{align*}
$$

From (i) and (ii)
$\mathrm{z}=\mathrm{w}$
$\Rightarrow\left|z^{2}-w^{2}\right|=0$
105. Ans. (B)

5 cards are required for 2 clubs means in first 4 draws there is only one club and fifth drawn card is a club.
\Rightarrow one card is drawn from 13 clubs, The other 3 cards are drawn from non club cards and none of them is ace of heart.
\therefore The required probability
106. Ans. (D)

$$
\frac{\text { dearrangement of } 5 \text { objects }}{5!}=\frac{44}{120}=\frac{11}{30}
$$

107. Ans. (B)

$$
f(x)=\left\{\begin{array}{cc}
\frac{\mathrm{x} \ell_{\mathrm{n}} \cos \mathrm{x}}{\ell_{\mathrm{n}}\left(1+\mathrm{x}^{2}\right)}, & \mathrm{x} \neq 0 \\
0, & \mathrm{x}=0
\end{array}\right.
$$

One should check the derivability at $\mathrm{x}=0$ only $f^{\prime}(0)=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{~h} \ell_{\mathrm{n}} \cosh }{\mathrm{h} \ell_{\mathrm{n}}\left(1+\mathrm{h}^{2}\right)}=\frac{-\tanh }{2 \mathrm{~h}}=-\frac{1}{2}$
\Rightarrow function is derivable at $x=0 \Rightarrow A$
108. Ans. (B)
109. Ans. (D)
$\frac{1}{2}\left|\begin{array}{cccc}\lambda+1 & 2 \lambda+1 & 2 \lambda+2 & \lambda+1 \\ 1 & 3 & 2 \lambda & 1\end{array}\right|=0$
$\Rightarrow \frac{1}{2}\left|3 \lambda+3-2 \lambda-1+4 \lambda^{2}+2 \lambda-6 \lambda+6+2 \lambda+2-2 \lambda^{2}-2 \lambda\right|=0$
$\frac{1}{2}\left(2 \lambda^{2}-3 \lambda-2\right)=0$
$2 \lambda^{2}-4 \lambda+\lambda-2=0$
$(2 \lambda+1)(\lambda-2)=0$
$\lambda=-\frac{1}{2}, 2$
110. Ans. (C)

Let $x=\frac{a b}{t}$
$\Rightarrow \quad \mathrm{dx}=-\frac{\mathrm{ab}}{\mathrm{t}^{2}} \mathrm{dt}$
$\Rightarrow \quad I_{2}=\int_{a}^{b} \frac{e^{t / a}}{\frac{a b}{t}} \cdot \frac{a b}{t^{2}} d t \quad \Rightarrow \quad I_{2}=I_{1}$
111. Ans. (A)
112. Ans. (B)

$$
\begin{aligned}
& \int_{1}^{2} e^{x^{2}} d x=\alpha \quad I=\int_{e}^{e^{4}} \sqrt{\ell n x} d x \\
& x=e^{t} \quad d x=e^{t} d t \\
& x=\int_{1}^{4} \sqrt{t} e^{t} d t \quad \text { put } t=y^{2} \\
& \Rightarrow \quad x=2 \int_{1}^{2} y^{2} e^{y^{2}} d y=4 \alpha \\
& \text { I II }
\end{aligned}
$$

113. Ans. (B)

Remaining 10 persons can be distribute to 2 graphs of $6 \& 4$ in $\frac{10!}{4!6!}$ ways now there person can sit in $\frac{8!8!10!}{4!6!}$ ways
114. Ans. (A)

$$
\begin{aligned}
& \sum_{r=0}^{m}=\left|\begin{array}{ccc}
\Sigma(2 r-1) & \Sigma^{m} c_{r} & \Sigma 1 \\
m^{2}-1 & 2^{m} & m+1 \\
\sin ^{2}(m) & \sin ^{2}(m) & \sin ^{2}(m+1)
\end{array}\right| \\
& = \\
& \left|\begin{array}{ccc}
m(m+1)-(m+1) & 2^{m} & m+1 \\
m^{2}-1 & 2^{m} & m+1 \\
\sin ^{2}(m) & \sin ^{2}(m) & \sin ^{2}(m+1)
\end{array}\right| \\
& =0
\end{aligned}
$$

115. Ans. (D)
116. Ans. (A)

$$
\left|\begin{array}{ccc}
-1 & 2 & 1 \\
3+2 \sqrt{2} & 2+2 \sqrt{2} & 1 \\
3-2 \sqrt{2} & 2-2 \sqrt{2} & 1
\end{array}\right| \quad R_{3} \rightarrow R_{2}+R_{3}
$$

$$
=2\left|\begin{array}{ccc}
-1 & 2 & 1 \\
3+2 \sqrt{2} & 2+2 \sqrt{2} & 1 \\
3 & 2 & 1
\end{array}\right| \quad R_{1} \rightarrow R_{1}-R_{3}
$$

$$
=2\left|\begin{array}{ccc}
-4 & 0 & 0 \\
3+2 \sqrt{2} & 2+2 \sqrt{2} & 1 \\
3 & 2 & 1
\end{array}\right|
$$

$$
=2[-4(2+2 \sqrt{2}-2)]=-16 \sqrt{2}
$$

absolute value $=16 \sqrt{2}$.
So, (A) is correct .
117. Ans. (A)
118. Ans. (C)
119. Ans. (A)

$$
\begin{aligned}
& f(x)=\lim _{n \rightarrow \infty}(1+x)\left(1+x^{2}\right)\left(1+x^{2^{2}}\right) \ldots . .\left(1+x^{2^{n}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{(1-x)(1+x)\left(1+x^{2}\right)\left(1+x^{2^{2}}\right) \ldots .\left(1+x^{2^{n}}\right)}{(1-x)} \\
& =\lim _{n \rightarrow \infty} \frac{\left(1-x^{2}\right)\left(1+x^{2}\right)\left(1+x^{2^{2}}\right) \ldots .\left(1+x^{2^{n}}\right)}{(1-x)} \\
& =\lim _{n \rightarrow \infty} \frac{\left(1-x^{2^{2}}\right)\left(1+x^{2^{2}}\right) \ldots .\left(1+x^{2^{n}}\right)}{(1-x)}
\end{aligned}
$$

Continuing in the similar manner we get,
$f(x)=\lim _{n \rightarrow \infty} \frac{\left(1-x^{2^{n}}\right)\left(1+\mathrm{x}^{2^{n}}\right)}{(1-x)}=\lim _{n \rightarrow \infty} \frac{1-\mathrm{x}^{2^{n+1}}}{1-\mathrm{x}}$
$=\frac{1}{1-\mathrm{x}}$
$\left\{\because|\mathrm{x}|<1 \Rightarrow \mathrm{x}^{2^{n+1}} \rightarrow 0\right\}$.
120. Ans. (B)
121. Ans. (D)

Let $\mathrm{I}=\int_{0}^{\infty} \frac{\mathrm{e}^{-1 / x^{5}}}{\mathrm{x}^{3} \sqrt{\mathrm{x}}} d \mathrm{x}=\int_{0}^{\infty} \frac{e^{-1 / x^{5}}}{\mathrm{x}^{7 / 2}} d \mathrm{x}$
Put $\frac{1}{\mathrm{x}^{5}}=\mathrm{t}^{2} \quad$ or $\quad \frac{1}{\mathrm{x}^{5 / 2}}=\mathrm{t}$
$-\frac{5}{2} x^{-7 / 2} \mathrm{dx}=\mathrm{dt}$
$\frac{1}{x^{7 / 2}} d x=-\frac{2}{5} d t$
$\Rightarrow \quad \mathrm{I}=-\frac{2}{5} \int_{\infty}^{0} \mathrm{e}^{-\mathrm{t}^{2}} \mathrm{dt}=\frac{2}{5} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{t}^{2}} \mathrm{dt}=\frac{2 \alpha}{5}$
122. Ans. (B)
123. Ans. (D)
124. Ans. (B)
$\mathrm{f}(\mathrm{x})=2^{\mathrm{x}(\mathrm{x}-1)}$
It is one-one onto function
$\log _{2} y=x(x-1)$
$\Rightarrow \quad x^{2}-x-\log _{2} y=0$

$$
x=\frac{1 \pm \sqrt{1+4 \log _{2} y}}{2}
$$

$\mathrm{f}^{-1}(\mathrm{x})=\frac{1+\sqrt{1+4 \log _{2} \mathrm{x}}}{2}$

125. Ans. (A)

$\left|\cot ^{-1} \mathrm{x}\right|=\cot ^{-1} \mathrm{x} \quad$ (it is always +ve)
$\left|\tan ^{-1} x\right|+\cot ^{-1} x=\frac{\pi}{2}$
$\left|\tan ^{-1} \mathrm{x}\right|=\frac{\pi}{2}-\cot ^{-1} \mathrm{x}$
$\left|\tan ^{-1} \mathrm{x}\right|=\tan ^{-1} \mathrm{x}$
possible when $\tan ^{-1} \mathrm{X}$ is positive $\mathrm{x} \geq 0$
126. Ans. (D)
$(f+g)(x)= \begin{cases}2 x-1 & x \in I \\ 2 x-1 & x \notin I\end{cases}$
$\Rightarrow(f+\mathrm{g})(\mathrm{x})=2 \mathrm{x}-1 \forall \mathrm{x} \in \mathrm{R}$
which is one-one onto
$\Rightarrow(f+\mathrm{g})^{-1}(\mathrm{x})=\frac{\mathrm{x}+1}{2}$
$\Rightarrow(f+\mathrm{g})^{-1}(0)=\frac{1}{2}$
127. Ans. (C)
$\int x \ln x d x+\frac{1}{2} \int x d x=\ln x \cdot \frac{x^{2}}{2}-\int \frac{1}{x} \frac{x^{2}}{2} d x+\frac{x^{2}}{4}$
$=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+\frac{x^{2}}{4}+c=\frac{x^{2}}{2} \ln x+c$
128. Ans. (B)
129. Ans. (A)
$\int \mathrm{x} \sin \frac{1}{\mathrm{x}} \mathrm{dx}=\sin \frac{1}{\mathrm{x}} \cdot \frac{\mathrm{x}^{2}}{2}-\int \frac{\mathrm{x}^{2}}{2} \cos \frac{1}{\mathrm{x}} \mathrm{x}-\frac{1}{\mathrm{x}^{2}} \mathrm{dx}+\mathrm{c}$
$=\frac{\mathrm{x}^{2}}{2} \sin \frac{1}{\mathrm{x}}+\frac{1}{2} \int \cos \frac{1}{\mathrm{x}} \mathrm{dx}+\mathrm{c}$
$=\frac{x^{2}}{2} \sin \frac{1}{x}+\frac{1}{2}\left[x \cos \frac{1}{x}-\int x \cdot\left(-\sin \frac{1}{x}\right) x-\frac{1}{x^{2}} d x\right]+c$
$=\frac{x^{2}}{2} \sin \frac{1}{x}+\frac{1}{2} x \cos \frac{1}{x}-\frac{1}{2} \int \frac{1}{x} \sin \frac{1}{x} d x+c$
$\Rightarrow \int\left(\mathrm{x}+\frac{1}{2 \mathrm{x}}\right) \sin \frac{1}{\mathrm{x}} \mathrm{dx}=\frac{\mathrm{x}^{2}}{2} \sin \frac{1}{\mathrm{x}}+\frac{1}{2} \mathrm{x} \cos \frac{1}{\mathrm{x}}+\mathrm{c}$
$\Rightarrow \quad \int\left(2 x+\frac{1}{x}\right) \sin \frac{1}{x} d x=x^{2} \sin \frac{1}{x}+x \cos \frac{1}{x}+c$
130. Ans. (A)

The coefficient is
$\frac{6!}{1!2!3!} \cdot \operatorname{cosec} \theta \cdot \cos ^{2} \theta \cdot \sin ^{3} \theta=15 \sin ^{2} 2 \theta$
\Rightarrow maximum value is 15 at $\sin 2 \theta=1$

