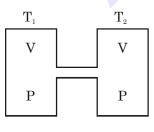
S	ALLEN	®
path to success	CAREER INSTITUTE	

ANSWERKEY & SOLUTIONS																				
Q.No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	В	Α	Α	D	Α	D	В	В	С	D	В	С	D	В	С	А	В	А	В	D
Q.No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	В	D	D	Α	С	А	Α	А	А	D	В	В	Α	С	А	В	С	В	С	D
Q.No.	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	С	С	В	С	С	С	D	В	D	А	С	С	D	D	В	D	В	С	D	D
Q.No.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
Ans.	А	В	Α	В	D	А	С	В	D	А	В	D	D	А	В	В	С	А	Α	А
Q.No.	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Ans.	В	Α	D	С	В	С	Α	А	Α	С	С	С	Α	С	D	D	D	С	С	А
Q.No.	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Ans.	D	Α	Α	С	В	D	В	В	D	С	Α	В	В	А	D	Α	A	С	Α	В
Q.No.	121	122	123	124	125	126	127	128	129	130										
Ans.	D	В	D	В	Α	D	С	В	Α	Α										

1. Ans. (**B**)


2. Ans. (A)

A cavity behaves somewhat like a black body, and has greater emissivity than the rest of the wood, at the same temperature.

- 3. Ans. (A)
- 4. Ans. (D)

 $U = \frac{nfRT}{2} = \frac{nfN_AkT}{2}$ $\frac{2U}{fkT} = nN_A = N$

- 5. Ans. (A)
- 6. Ans. (D)
- 7. Ans. (B)

$$T_2 > T_1$$

PV = nRT = constant

$$\mathbf{n}_1 \mathbf{T}_1 = \mathbf{n}_2 \mathbf{T}_2$$

- **n**₁ < **n**₂ **8. Ans. (B)**
- 9. Ans. (C)
- **10.** Ans. (D)
- 11. Ans. (B)
- 12. Ans. (C)
- 13. Ans. (D)

$$d = \lambda_d = \frac{h}{p} = \frac{h}{mv}$$

$$d = \frac{h}{\left[\rho \cdot \frac{4}{3}\pi \left(\frac{d}{2}\right)^3\right] \times \left(\sqrt{2gd}\right)}$$
$$d = \left(\frac{18h^2}{\pi^2 \rho^2 g}\right)^{1/9}$$

ALLEN AREER INSTITUTE CAREER INSTITUTE

BITSAT PRACTICE PAPER-1

14. Ans. (B)

Maximum KE of photoelectron

$$\frac{1}{2}mv_{max}^{2} = \frac{hc}{\lambda} - \phi$$
$$\implies v_{max} = \sqrt{\frac{2}{m}\left(\frac{hc}{\lambda} - \phi\right)}$$

 $= \sqrt{\frac{2}{9 \times 10^{-31}} \left(\frac{6.6 \times 10^{-34} \times 3 \times 10^8}{3300 \times 10^{-10}} - 2.5 \times 1.6 \times 10^{-19} \right)}$

$$= \sqrt{\frac{4}{9} \times 10^{12}} = \frac{2}{3} \times 10^6 \,\mathrm{ms}^3$$

Now Bev_{max} = $\frac{Mv_{max}^2}{R_{max}}$

$$\Rightarrow e = \frac{Mv_{max}}{BR_{max}} = \frac{9 \times 10^{-31} \times \frac{2}{3} \times 10^{6}}{6.7 \times 10^{-6} \times 0.5}$$

 $= 1.8 \times 10^{-19} C$

15. Ans. (C)

From Bohr model $\frac{1}{\lambda} = R\left(\frac{1}{n_1^2}\right)$

$$r = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

$$\frac{1}{\lambda_1} = R\left(\frac{1}{2^2} - \frac{1}{3^2}\right) = \frac{5}{36}R \quad \dots \quad (i) \quad \text{and}$$

$$\frac{1}{\lambda_2} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) = \frac{3}{4}R$$
 (ii)

Dividing eq. (i) and (ii), we get $\frac{\lambda_1}{\lambda_2} = \frac{27}{5}$

16. Ans. (A)

$$\sqrt{f} = (Z-b) \left(1-\frac{1}{n^2}\right)^{1/2}$$

17. Ans. (B)

Mass of $1m^3$ volume = 1000kg from equation of continuity

$$A_Q = 3A_P$$

 $V_{\rm Q}A_{\rm Q}=A_{\rm P}V_{\rm P}$

 $V_{\mathrm{Q}}3.A_{\mathrm{P}}=A_{\mathrm{P}}\left(3\right)$

 $V_{\rm Q}$ =1m/s

A change is in P.E = $1000 \times 10 \times \frac{1}{2} = 5000$ J

change in K.E = $\frac{1}{2} \times 1000 (3^2 - 1^2) = 4000 J$

Net workdone by pressure = 1000J/m³

- **18.** Ans. (A)
- **19.** Ans. (B) Both capacitors are in parallel

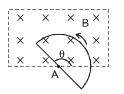
20. Ans. (D)

$$B = \frac{\mu_0 NiR^2}{2(R^2 + x^2)^{3/2}}$$

$$B_{max} \Rightarrow x_{min} = 0$$
]

- 21. Ans. (B)
- 22. Ans. (D)

23. Ans. (D)

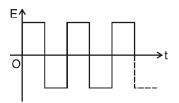

$$E = \frac{d\phi}{dt}$$
, $\phi = B\pi r^2$ and $\frac{dr}{dt} = \text{constant so E is}$

constant

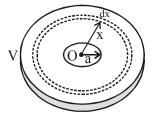
24. Ans. (A)

The flux through loop = $\phi = B(\frac{1}{2}r^2\theta)$

: Induced emf in loop =
$$\frac{d\phi}{dt} = \frac{1}{2}Br^2 \omega$$


 $\therefore \omega$ = constant, emf shall be constant in magnitude.

Since magnetic flux increases for halfcycle and decreases for the other half. Hence emf changes sign every half cycle.


53.

Ans. (D)

 \therefore The correct graph is

- 25. Ans. (C)
- 26. Ans. (A)
- 27. Ans. (A)

$$dR = \frac{\rho dr}{2\pi rt}$$
(All in series)

$$\therefore R = \int_{a}^{b} \frac{\rho dr}{2\pi rt} = \frac{\rho}{2\pi t} \ell n \left(\frac{b}{a}\right).$$

28. Ans. (A) Current won't pass through $4\Omega \& 6\Omega$

so P =
$$\frac{(30)^2}{3}$$
 = 300 W

$$I = \frac{30}{3} = 10A$$

29. Ans. (A)

$$\frac{d^2x}{dt^2} = kx ; \frac{d^2x}{dt^2} = -\infty^2 x$$

$$\infty^2 = k$$
; $\infty = \sqrt{k}$; $T = \frac{2\pi}{\infty} = \frac{2\pi}{\sqrt{k}}$

30. Ans. (D) 'ng А mean position 'ng $mg - N_1 = m\omega^2 A$ $N_2 - mg = m\omega^2 A$ $N_1 = mg - m\omega^2 A$ $N_2 = mg + m\omega^2 A$ $N_1 = 600 - 60 \times 16 \times \frac{1}{10}$ $= 536 \text{ N} \Rightarrow \text{m} = 53.6 \text{ kg}$ $N_2 = 600 + 64 = 664 \implies m = 66.4 \text{ kg}$ 31. Ans. (B) Ans. (B) 32. 33. Ans. (A) 34. Ans. (C) 35. Ans. (A) 36. Ans. (B) 37. Ans. (C) 38. Ans. (B) 39. Ans. (C) 40. Ans. (D) 41. Ans.(C) Ans.(C) 42. 43. Ans.(B) **44.** Ans. (C) 45. Ans.(C) **46.** Ans. (C) 47. Ans.(D) **48.** Ans.(B) **49.** Ans. (D) **50.** Ans.(A) 51. Ans.(C) 52. Ans.(C)

ALLER ACT O SUCCESS

- 54. Ans. (D)
- 55. Ans. (B)
- 56. Ans. (D)
- 57. Ans. (B)
- 58. Ans. (C)
- 59. Ans. (D)
- 60. Ans. (D)
- 61. Ans. (A)

Explanation: There are few exceptions in using the comparative degree of adjectives, where 'to' is used instead of 'than'. These adjectives end with '-ior' such as: Senior, junior, superior, inferior, interior, posterior, prior. Hence Option A is the answer.

62. Ans. (B)

Explanation: Comparative degree of adjective (-er; smarter) is not used while comparing traits of the same person or thing. Instead we use more+positive degree (more smart). Hence Option B is the answer.

63. Ans. (A)

Explanation: The phrasal verb called away means to ask someone to leave a place, and called off on the other hand means to cancel or abandon. So according to the question the correct answer will be Option A.

64. Ans. (B)

Explanation: The word snarl means to say something in an angry, bad-tempered voice. In the sentence it is used as a phrasal verb; snarled on does not means anything, so snarled up will be the correct answer that means a disorganized situation such as a traffic jam.

65. Ans. (D)

Explanation: According to the given passage the correct answer to the question will be option D only.

66. Ans. (A)

Explanation: According to the given passage the correct answer to the question will be option A only.

67. Ans. (C)

Explanation: According to the given passage the correct answer to the question will be option C only.

BITSAT PRACTICE PAPER-1

68. Ans. (B)

Explanation: According to the given passage the correct answer to the question will be option B only.

69. Ans. (D)

Explanation: The one word used for a great work of art is Magnum Opus.

70. Ans. (A)

Explanation: Arrangement in option A gives meaning to the passage.

71. Ans. (B)

Explanation: The given figure contains numbers 1 to 6 in three alternate segments, the smaller number towards the outside and the numbers 14 to 19 in the remaining three alternate segments with smaller numbers towards the inside. Therefore option B is correct.

72. Ans. (D)

T		
Ex	plan	ation:

Explanation					

73. Ans. (D)

Explanation: The third figure in each row is the combination of the first two. Therefore option D is correct.

74. Ans. (A)

75. Ans. (B)

Explanation: The logic of the given series is as follows:

1, 13-1, 2, 23-1, 3, 33-1, 4, 43-1

Therefore option B is correct.

76. Ans. (B)

Explanation: Add up the four outer numbers and place your answer in the centre square of the shape one place clockwise. Therefore option B is correct.

- 77. Ans. (C)
- 78. Ans. (A)
- 79. Ans. (A)

Explanation: Except February, all other months have 31 days. Therefore option A is correct.

path to succ	BITSAT PR	АСТІ	CE PAPER-1
80.	Ans. (A)	89.	Ans. (A)
	Explanation: Pragmatic is an antonym for		4 + 9 = 13
	quixotic, and clear is an antonym for murky. Therefore option A is correct.		13 + 9 = 22
81.	Ans. (B)		22 + 13 = 35
82.	Ans. (A)		35 + 22 = 57
	Hence the common face with 5 dots are in the square positions. Hence 1 dot is opposite to	90.	Ans. (C)
	2 dots.		Sanjay is new position from left is 22nd but it is
83.	Ans. (D)		the same as Rohit's earlier position which is 12th
	Position of $O = 15$ Position of $X = 24$		from right.
	$\Rightarrow OX = 15 + 24 = 39$		\Rightarrow no. of persons in a row
	Hence $LION = 12 + 9 + 15 + 14 = 50$		= 22 + 12 - 1
84.	Ans. (C)		= 33
	By observation. is leap year century divisible by 400	91.	Ans. (C)
85.	Ans. (B)		Let $2^x = y$, then 6^{th} term is
	No. of cubes with two surfaces painted		× 5 () 5
	= No. of cubes present at the corners + no. of cubes present at 4 edges		${}^{8}C_{5}\left(\left(y^{2}+5\right)^{1/3}\right)^{8-5}\left(\frac{1}{\left(y+1\right)^{1/5}}\right)^{5}=168$
	= 8 + (n - 2) 4 = 8 + 8 = 16		
86.	Ans. (C)		$\Rightarrow \frac{8 \times 7 \times 6}{3!} \left(\frac{y^2 + 5}{y + 1} \right) = 168 \Rightarrow \frac{y^2 + 5}{y + 1} = 3$
07	by observation		3! $(y+1)$ $y+1$
87.	Ans. (A) between 2 o'clock to 4 o'clock - 3 times		$\Rightarrow y^2 - 3y + 2 = 0 \qquad \Rightarrow y = 1, 2$
	between 4 o'clock to 8 o'clock - 8 times		$\Rightarrow 2^{x} = 1 = 2^{0} \qquad \Rightarrow x = 0$
	between 8 o'clock to 10 o'clock - 3 times		$2^{\mathbf{x}} = 2 = 2^{1} \qquad \qquad \Rightarrow \mathbf{x} = 1$
88.	Total - 14 times Ans. (A)	92.	Ans. (C)
00.			Let $\vec{a} = 2 \hat{x}\hat{i} + \hat{x}\hat{j} + \hat{z}\hat{k}$
	↑N		Let $\mathbf{a} = 2 \mathbf{x}1 + \mathbf{x}\mathbf{J} + 2\mathbf{K}$
	в		$\sqrt{5 x^2 + z^2} = 5 \sqrt{2}$
			7
			Also, $\cos 135^\circ = \frac{z}{\sqrt{5 x^2 + z^2}}$
	O ▲ E		·
	11		$=\frac{z}{5\sqrt{2}}=-\frac{1}{\sqrt{2}}$
	$AB = \sqrt{OB^2 + OA^2}$		$5 \sqrt{2}$ $\sqrt{2}$
	$=\sqrt{(300)^2 + (400)^2} = \sqrt{250000}$		$\Rightarrow z = -5$, then $x = \sqrt{5}$,
	,		The required vector
	= 500 km C being in the midway of AB, so BC = 250 km		$\vec{a} = 2\sqrt{5}\hat{i} + \sqrt{5}\hat{j} - 5\hat{k}$
	C being in the midway 01AD, so $DC = 230$ km		

93. Ans. (A)

Common chord = diameter of second circle

$$= 2\sqrt{(-1)^{2} + (-2)^{2} - (-11)} = 8$$

then area = $\frac{\sqrt{3}}{4}(8)^2 = {}_{16}\sqrt{3}$ sq. units.

94. Ans. (C)

Cubing the equation $\sin x + \csc x = 2$ $\Rightarrow \sin^3 x + \csc^3 x + 3\sin x \csc(\sin x + \csc x) = 8$

 $\Rightarrow \sin^3 x + \csc^3 x + 3(2) = 8$

$$\Rightarrow \sin^3 x + \csc^3 x = 2$$

95. Ans. (D)

Let $f'(x) = 3ax^2 - 4bx + c$ $\Rightarrow f(x) = ax^3 - 2bx^2 + cx + d$ Now f(0) = f(1) & f(x) is continuous in [0, 1] and differentiable in (0, 1). So, by Rolle's theorem, $3ax^2 - 4bx + c = 0$ has atleast one root between 0 and 1.

96. Ans. (D)

We have $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$ $\Rightarrow (a_1 + a_{24}) + (a_5 + a_{20}) + (a_{10} + a_{15}) = 225$ $\Rightarrow 3 (a_1 + a_{24}) = 225$ (\because in an A.P. nth term from beginning + nth term from end = first term + last term) $\Rightarrow a_1 + a_{24} = 75$ (1) $\therefore a_1 + a_2 + a_3 + + a_{23} + a_{24}$ $\Rightarrow (a_1 + a_{24}) + (a_2 + a_{23}) + (a_3 + a_{22}) +$ $+ (a_{12} + a_{13})$ $\Rightarrow 12 (a_1 + a_{24}) = 12.75$ from (1) = 900

97. Ans. (D)

Length of tangent = length of subnormal

$$\implies \quad \frac{\mathrm{d}y}{\mathrm{d}x} = \pm 1$$

If $\frac{dy}{dx} = 1$, then equation of tangent at (3, 4) is

 $y-4 = x-3 \Rightarrow y = x+1$ which cuts coordinate axes at (0, 1) & (-1, 0) If $\frac{dy}{dx} = -1$, then equation of tangent at (3, 4) is y - 4 = -(x - 3) or x + y = 7 which cuts positive coordinate axes at A(7, 0)

which cuts positive coordinate axes at A(7, 0)and B(0, 7)

$$\therefore \quad \text{Area of } \Delta \text{OAB} = \frac{1}{2} \cdot 7 \cdot 7 = \frac{49}{2}$$

98. Ans. (C)

If one root is 2i then other root is -2i

$$\therefore$$
 sum of the roots = 0

$$\Rightarrow -B/A = 0 \Rightarrow B = 0$$

$$\therefore B^{3} (A^{3} - C^{3}) = 0.$$

99. Ans. (C)

Length of normal

$$= y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = a(1 - \cos t) \sqrt{1 + \tan^2 \frac{t}{2}}$$

$$= a \left(2\sin^2 \frac{t}{2} \right) \left(\sec \frac{t}{2} \right) = 2a\sin^2 \frac{t}{2} \sec \frac{t}{2}$$

100. Ans. (A)

Since f(x + 1) - f(x)= (x + 1 + c) - (x + c) = 1f(1), f(2), f(3), ..., f(n) is A.P. with common difference equal to 1.

$$\sum_{x=1}^{n} f(x) = \sum_{x=1}^{n} (x+c) = \sum_{x=1}^{n} x + c \sum_{x=1}^{n} (1)$$

$$= \frac{n(n+1)}{2} + nc = \frac{n(n+2c+1)}{2}$$

101. Ans. (D)

Let T is point of contact power of point = TA . TB = 2.2 = 2x . 2y $\Rightarrow xy = 1$ we have to find

 $\pi \left[(x + y)^2 - x^2 - y^2 \right] = \pi [2 xy] = 2 \pi$

102. Ans. (A)

If $x^2 + ax + b = 0$; $x^2 + bx + c = 0$; $x^2 + cx + a = 0$ have the roots (α, β) , (β, γ) & (γ, α) respectively then

 $\alpha\beta = b, \quad \beta\gamma = c, \quad \gamma\alpha = a$

 $\alpha^2 \beta^2 \gamma^2 = abc \qquad \Rightarrow \quad \alpha \beta \gamma = \pm \sqrt{abc}$

103. Ans. (A)

Let $\frac{p}{q}$ be one of the roots (where p & q are relatively prime numbers)

$$\Rightarrow \frac{p^{3}}{q^{3}} - \frac{3p}{q} + 1 = 0$$

$$\Rightarrow p^{3} - 3pq^{2} + q^{3} = 0$$

$$\Rightarrow q^{3} = p(3q^{2} - p^{2})$$

$$\Rightarrow \frac{q^{3}}{p} = 3q^{2} - p^{2}$$

Since p & q are relatively prim

Since p & q are relatively prime numbers

$$\therefore \text{ RHS is always an integer}$$

$$\therefore p = 1$$

$$\Rightarrow q^3 = q^2 - 1$$

$$\Rightarrow q^2(q - 3) = -1$$

$$q^2 = 1 \& q - 3 = 1$$

or $q^2 = -1 \& q - 3 = 1$

$$q = \pm 1 \qquad q = 4$$

Not possible

 \therefore No value of q Hence given equation does not have any rational root.

104. Ans. (C)

$$z + \frac{1}{z} = w + \frac{1}{w}$$

$$\Rightarrow z - w = \frac{z - w}{zw}$$

$$\Rightarrow z = w \text{ or } zw = 1 \qquad \dots \dots (i)$$

Similarly

$$z + \frac{1}{w} = w + \frac{1}{z} \implies z - w = \frac{(z - w)}{-zw}$$

$$\Rightarrow z = w \text{ or } zw = -1 \qquad \dots \dots (ii)$$

From (i) and (ii)

$$z = w$$

$$\Rightarrow |z^2 - w^2| = 0$$

105. Ans. (B)

5 cards are required for 2 clubs means in first 4 draws there is only one club and fifth drawn card is a club.

 \Rightarrow one card is drawn from 13 clubs, The other 3 cards are drawn from non club cards and none of them is ace of heart.

 \therefore The required probability

$$=\underbrace{\overset{13}{\underbrace{\text{C}_{1} \times \overset{38}{\text{C}_{3}}}}_{\text{Probability of first 4 cards}} \times \underbrace{\overset{12}{\underbrace{\text{C}_{1}}}_{\text{48} \underbrace{\text{C}_{1}}}_{\text{Probability of drawing 5}^{\text{fb}}} \times \underbrace{\frac{1}{\overset{47}{\text{C}_{1}}}_{\text{Probability of drawing 6}^{\text{fb}}}_{\text{drawing 6}^{\text{fb}}} = \frac{13}{188} \cdot \frac{\overset{38}{\overset{52}{\text{C}_{4}}}}{\overset{52}{\overset{52}{\text{C}_{4}}}}$$

106. Ans. (D)

$$\frac{\text{dearrangement of 5 objects}}{5!} = \frac{44}{120} = \frac{11}{30}$$

107. Ans. (B)

$$f(\mathbf{x}) = \begin{cases} \frac{x\ell_n \cos x}{\ell_n (1 + x^2)}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

One should check the derivability at x = 0 only

$$f'(0) = \lim_{h \to 0} \frac{h \ell_n \cosh}{h \ell_n (1 + h^2)} = \frac{-\tanh}{2h} = -\frac{1}{2}$$

 \Rightarrow function is derivable at x = 0 \Rightarrow A

108. Ans. (B)

109. Ans. (D)

$$\frac{1}{2}\begin{vmatrix}\lambda+1 & 2\lambda+1 & 2\lambda+2 & \lambda+1\\1 & 3 & 2\lambda & 1\end{vmatrix} = 0$$

$$\implies \frac{1}{2}\begin{vmatrix}3\lambda+3-2\lambda-1+4\lambda^2+2\lambda-6\lambda+6+2\lambda+2-2\lambda^2-2\lambda\end{vmatrix} = 0$$

$$\frac{1}{2}(2\lambda^2-3\lambda-2) = 0$$

$$2\lambda^2-4\lambda+\lambda-2 = 0$$

$$(2\lambda+1)(\lambda-2) = 0$$

$$\lambda = -\frac{1}{2}, 2$$

HS

ALLEN Att to success

BITSAT PRACTICE PAPER-1

110. Ans. (C)

Let
$$x = \frac{ab}{t}$$
 \Rightarrow $dx = -\frac{ab}{t^2}dt$

$$\Rightarrow I_2 = \int_a^b \frac{e^{t/a}}{\frac{ab}{t}} \cdot \frac{ab}{t^2} dt \quad \Rightarrow \quad I_2 = I_1$$

111. Ans. (A)

112. Ans. (B)

$$\int_{1}^{2} e^{x^{2}} dx = \alpha \qquad I = \int_{e}^{e^{4}} \sqrt{\ell n x} dx$$
$$x = e^{t} \qquad \Rightarrow dx = e^{t} dt$$
$$x = \int_{1}^{4} \sqrt{t} e^{t} dt \qquad \text{put } t = y^{2}$$

$$\Rightarrow x = 2 \int_{1}^{2} y^{2} e^{y^{2}} dy = 4\alpha$$

113. Ans. (B)

Remaining 10 persons can be distribute to 2 graphs of 6 & 4 in $\frac{10!}{4!6!}$ ways now there

person can sit in $\frac{8!8!10!}{4!6!}$ ways

114. Ans. (A)

$$\sum_{r=0}^{m} = \begin{vmatrix} \Sigma (2r-1) & \Sigma^{m} c_{r} & \Sigma 1 \\ m^{2} - 1 & 2^{m} & m+1 \\ \sin^{2} (m) & \sin^{2} (m) & \sin^{2} (m+1) \end{vmatrix}$$

 $\begin{array}{cccc} m & (m+1) - (m+1) & 2^{m} & m+1 \\ m^{2} & -1 & 2^{m} & m+1 \\ \sin^{2} & (m) & \sin^{2} & (m) & \sin^{2} & (m+1) \end{array}$

= 0

115. Ans. (D)
116. Ans. (A)

$$\begin{vmatrix} -1 & 2 & 1 \\ 3+2\sqrt{2} & 2+2\sqrt{2} & 1 \\ 3-2\sqrt{2} & 2-2\sqrt{2} & 1 \\ 3-2\sqrt{2} & 2-2\sqrt{2} & 1 \\ 3-2\sqrt{2} & 2-2\sqrt{2} & 1 \\ 3-2\sqrt{2} & 2+2\sqrt{2} & 1 \\ 1 \end{vmatrix}$$

$$= 2\left[-4\left(2+2\sqrt{2}-2\right)\right] = -16\sqrt{2}$$
absolute value = 16 $\sqrt{2}$.
So, (A) is correct.
117. Ans. (A)
118. Ans. (C)
119. Ans. (A)
 $f(x) = \lim_{n \to \infty} (1+x)(1+x^2)(1+x^{2^2})....(1+x^{2^n})$
 $= \lim_{n \to \infty} \frac{(1-x^2)(1+x^2)(1+x^{2^2})....(1+x^{2^n})}{(1-x)}$
 $= \lim_{n \to \infty} \frac{(1-x^2)(1+x^2)(1+x^{2^2})....(1+x^{2^n})}{(1-x)}$
Continuing in the similar manner we get,
 $f(x) = \lim_{n \to \infty} \frac{(1-x^{2^n})(1+x^{2^n})....(1+x^{2^n})}{(1-x)} = \lim_{n \to \infty} \frac{1-x^{2^{n+1}}}{(1-x)}$

$$f(\mathbf{x}) = \lim_{n \to \infty} \frac{(1 - \mathbf{x})(1 + \mathbf{x})}{(1 - \mathbf{x})} = \lim_{n \to \infty} \frac{1 - \mathbf{x}^2}{1 - \mathbf{x}}$$
$$= \frac{1}{1 - \mathbf{x}}$$
$$\{ \because |\mathbf{x}| < 1 \Rightarrow \mathbf{x}^{2^{n+1}} \to 0 \}.$$
120. Ans. (B)

8 /9

- 121. Ans. (D)
 - Let $I = \int_{0}^{\infty} \frac{e^{-1/x^{5}}}{x^{3}\sqrt{x}} dx = \int_{0}^{\infty} \frac{e^{-1/x^{5}}}{x^{7/2}} dx$ Put $\frac{1}{x^{5}} = t^{2}$ or $\frac{1}{x^{5/2}} = t$ $-\frac{5}{2}x^{-7/2} dx = dt$ $\frac{1}{x^{7/2}} dx = -\frac{2}{5} dt$ $\Rightarrow I = -\frac{2}{5}\int_{\infty}^{0} e^{-t^{2}} dt = \frac{2}{5}\int_{0}^{\infty} e^{-t^{2}} dt = \frac{2\alpha}{5}$
- 122. Ans. (B)
- 123. Ans. (D)
- 124. Ans. (B)
 - $f(x) = 2^{x(x-1)}$

It is one-one onto function

$$log_2 y = x (x-1)$$

$$\Rightarrow x^2 - x - log_2 y = 0$$

$$x = \frac{1 \pm \sqrt{1 + 4 \log_2 y}}{2}$$

$$f^{-1}(x) = \frac{1 + \sqrt{1 + 4\log_2 x}}{2}$$

125. Ans. (A)

$$| \cot^{-1} x| = \cot^{-1} x$$
 (it is always +ve)

 $|\tan^{-1}x| + \cot^{-1}x = \frac{\pi}{2}$ $|\tan^{-1}x| = \frac{\pi}{2} - \cot^{-1}x$ $|\tan^{-1}x| = \tan^{-1}x$ possible when $\tan^{-1}x$ is positive $x \ge 0$ 126. Ans. (D) $(f + g)(x) = \begin{cases} 2x - 1 & x \in I \\ 2x - 1 & x \notin I \end{cases}$ $\Rightarrow (f + g) (x) = 2x - 1 \ \forall \ x \in R$ which is one-one onto $\Rightarrow (f+g)^{-1}(x) = \frac{x+1}{2}$ $\Rightarrow (f + g)^{-1}(0) = \frac{1}{2}$ 127. Ans. (C) $\int x \ln x dx + \frac{1}{2} \int x dx = \ln x \cdot \frac{x^2}{2} - \int \frac{1}{x} \frac{x^2}{2} dx + \frac{x^2}{4}$ $=\frac{x^{2}}{2}\ln x - \frac{x^{2}}{4} + \frac{x^{2}}{4} + c = \frac{x^{2}}{2}\ln x + c$ 128. Ans. (B) 129. Ans. (A) $\int x \sin \frac{1}{x} dx = \sin \frac{1}{x} \cdot \frac{x^2}{2} - \int \frac{x^2}{2} \cos \frac{1}{x} \times -\frac{1}{x^2} dx + c$ $=\frac{x^2}{2}\sin\frac{1}{x}+\frac{1}{2}\int\cos\frac{1}{x}dx+c$ $= \frac{x^{2}}{2}\sin\frac{1}{x} + \frac{1}{2}\left[x\cos\frac{1}{x} - \int x.(-\sin\frac{1}{x}) \times -\frac{1}{x^{2}}dx\right] + c$ $=\frac{x^{2}}{2}\sin\frac{1}{x}+\frac{1}{2}x\cos\frac{1}{x}-\frac{1}{2}\int\frac{1}{x}\sin\frac{1}{x}dx+c$ $\Rightarrow \int \left(x + \frac{1}{2x}\right) \sin \frac{1}{x} dx = \frac{x^2}{2} \sin \frac{1}{x} + \frac{1}{2} x \cos \frac{1}{x} + c$ $\Rightarrow \int \left(2x + \frac{1}{x}\right) \sin \frac{1}{x} dx = x^2 \sin \frac{1}{x} + x \cos \frac{1}{x} + c$ 130. Ans. (A) The coefficient is

> $\frac{6!}{1!2!3!}$. cosecθ. cos²θ. sin³θ = 15 sin²2θ ⇒ maximum value is 15 at sin2θ = 1