UNIT \& DIMENSION

1. The workdone by a gas molecule in an isolated system is given by, $W=\alpha \beta^{2} e^{-\frac{x^{2}}{\alpha k T}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature, α and β are constants. Then the dimension of β will be :
(1) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
(2) $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-2}\right]$
(3) $\left[\mathrm{M}^{2} \mathrm{~L} \mathrm{~T}^{2}\right]$
(4) $\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{0}\right]$
2. Match List-I with List-II :

List-I

(a) h (Planck's constant)

List-II

(i) $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-1}\right]$
(b) E (kinetic energy)
(ii) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-1}\right]$
(c) V (electric potential)
(iii) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-2}\right]$
(d) P (linear momentum) (iv) $\left[\mathrm{M}^{2} \mathrm{I}^{-1} \mathrm{~T}^{-3}\right]$

Choose the correct answer from the options given below :
(1) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (ii), (d) \rightarrow (i)
(2) (a) \rightarrow (ii), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (i)
(3) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (iii)
(4) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (i)
3. If e is the electronic charge, c is the speed of light in free space and h is Planck's constant, the quantity $\frac{1}{4 \pi \varepsilon_{0}} \frac{|\mathrm{e}|^{2}}{h c}$ has dimensions of :
(1) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
(2) $\left[\mathrm{L} \mathrm{C}^{-1}\right]$
(3) $\left[\mathrm{M} \mathrm{L} \mathrm{T}^{-1}\right]$
(4) $\left[\mathrm{M} \mathrm{L} \mathrm{T}{ }^{0}\right]$
4. In a typical combustion engine the work done by a gas molecule is given $\mathrm{W}=\alpha^{2} \beta \mathrm{e}^{\frac{-\beta \mathrm{x}^{2}}{\mathrm{kT}}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature. If α and β are constants, dimensions of α will be :
(1) $\left[\mathrm{MLT}^{-2}\right]$
(2) $\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
(3) $\left[\mathrm{M}^{2} \mathrm{LT}^{-2}\right]$
(4) $\left[\mathrm{MLT}^{-1}\right]$
5. If ' C ' and ' V ' represent capacity and voltage respectively then what are the dimensions of λ, where $\frac{\mathrm{C}}{\mathrm{V}}=\lambda$?
(1) $\left[\mathrm{M}^{-2} \mathrm{~L}^{-3} \mathrm{I}^{2} \mathrm{~T}^{6}\right]$
(2) $\left[\mathrm{M}^{-3} \mathrm{~L}^{-4} \mathrm{H}^{3} \mathrm{~T}^{7}\right]$
(3) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{I}^{-2} \mathrm{~T}^{-7}\right]$
(4) $\left[\mathrm{M}^{-2} \mathrm{~L}^{-4} \mathrm{I}^{3} \mathrm{~T}^{7}\right]$
6. If time (t), velocity (v), and angular momentum (l) are taken as the fundamental units. Then the dimension of mass (m) in terms of t, v and l is:
(1) $\left[t^{-1} v^{1} l^{-2}\right]$
(2) $\left[t^{1} v^{2} l^{-1}\right]$
(3) $\left[t^{-2} v^{-1} l^{1}\right]$
(4) $\left[t^{-1} v^{-2} l^{1}\right]$
7. The force is given in terms of time t and displacement x by the equation
$\mathrm{F}=\mathrm{A} \cos \mathrm{Bx}+\mathrm{C} \sin \mathrm{Dt}$
The dimensional formula of $\frac{A D}{B}$ is :
(1) $\left[\mathrm{M}^{0} \mathrm{~L} \mathrm{~T}^{-1}\right]$
(2) $\left[\mathrm{M} \mathrm{L}^{2} \mathrm{~T}^{-3}\right]$
(3) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]$
(4) $\left[\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-3}\right]$
8. If $\mathrm{E}, \mathrm{L}, \mathrm{M}$ and G denote the quantities as energy, angular momentum, mass and constant of gravitation respectively, then the dimensions of P in the formula $\mathrm{P}=\mathrm{EL}^{2} \mathrm{M}^{-5} \mathrm{G}^{-2}$ are :-
(1) $\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{0}\right]$
(2) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-1} \mathrm{~T}^{2}\right]$
(3) $\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]$
(4) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
9. Match List-I with List-II.

List-I		List-II	
(a)	Magnetic Induction	(i)	$\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}$
(b)	Magnetic Flux	(ii)	$\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~A}$
(c)	Magnetic Permeability	(iii)	$\mathrm{MT}^{-2} \mathrm{~A}^{-1}$
(d)	Magnetization	(iv)	$\mathrm{MLT}^{-2} \mathrm{~A}^{-2}$

Choose the most appropriate answer from the options given below :
(1) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)
(2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(3) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
(4) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
10. Which of the following is not a dimensionless quantity?
(1) Relative magnetic permeability $\left(\mu_{\mathrm{r}}\right)$
(2) Power factor
(3) Permeability of free space $\left(\mu_{0}\right)$
(4) Quality factor
11. If E and H represents the intensity of electric field and magnetising field respectively, then the unit of E / H will be :
(1) ohm
(2) mho
(3) joule
(4) newton
12. Match List-I with List-II.

List-I List-II

(a) R_{H} (Rydberg constant)
(i) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
(b) h (Planck's constant)
(ii) $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$
(c) μ_{B} (Magnetic field
(iii) m^{-1} energy density)
(d) η (coefficient of viscocity) (iv) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2}$

Choose the most appropriate answer from the options given below :
(1) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
(2) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)
(3) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)
(4) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
13. If force (F), length (L) and time (T) are taken as the fundamental quantities. Then what will be the dimension of density :
(1) $\left[\mathrm{FL}^{-4} \mathrm{~T}^{2}\right]$
(2) $\left[\mathrm{FL}^{-3} \mathrm{~T}^{2}\right]$
(3) $\left[\mathrm{FL}^{-5} \mathrm{~T}^{2}\right]$
(4) $\left[\mathrm{FL}^{-3} \mathrm{~T}^{3}\right]$
14. Match List-I with List-II.

List-I

(a) Torque
(b) Impulse
(c) Tension
(d) Surface Tension

List-II

(i) MLT^{-1}
(ii) MT^{-2}
(iii) $\mathrm{ML}^{2} \mathrm{~T}^{-2}$
(iv) MLT^{-2}

Choose the most appropriate answer from the option given below :
(1) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(2) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)
(3) (a)-(i), (b)-(iii), (c)-(iv), (d)-(ii)
(4) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)
15. Which of the following equations is dimensionally incorrect?
Where $\mathrm{t}=$ time, $\mathrm{h}=$ height, $\mathrm{s}=$ surface tension, $\theta=$ angle, $\rho=$ density, $\mathrm{a}, \mathrm{r}=$ radius, $\mathrm{g}=$ acceleration due to gravity, $\mathrm{v}=$ volume , $\mathrm{p}=$ pressure, $\mathrm{W}=$ work done, $\Gamma=$ torque, $\in=$ permittivity, $\mathrm{E}=$ electric field, $\mathrm{J}=$ current density, L = length.
(1) $v=\frac{\pi p a^{4}}{8 \eta L}$
(2) $\mathrm{h}=\frac{2 \mathrm{~s} \cos \theta}{\rho r g}$
(3) $J=\epsilon \frac{\partial \mathrm{E}}{\partial \mathrm{t}}$
(4) $\mathrm{W}=\Gamma \theta$
16. If velocity [V], time $[\mathrm{T}]$ and force $[\mathrm{F}]$ are chosen as the base quantities, the dimensions of the mass will be :
(1) $\left[\mathrm{FT}^{-1} \mathrm{~V}^{-1}\right]$
(2) $\left[\mathrm{FTV}^{-1}\right]$
(3) $\left[\mathrm{FT}^{2} \mathrm{~V}\right]$
(4) $\left[\mathrm{FVT}^{-1}\right]$

SOLUTION

1. Official Ans. by NTA (2)

Sol. $\frac{\mathrm{x}^{2}}{\alpha \mathrm{kT}} \rightarrow$ dimensionless
$\Rightarrow[\alpha]=\frac{\left[\mathrm{x}^{2}\right]}{[\mathrm{kT}]}=\frac{\mathrm{L}^{2}}{\mathrm{ML}^{2} \mathrm{~T}^{-2}}=\mathrm{M}^{-1} \mathrm{~T}^{2}$
Now $[\mathrm{W}]=[\alpha][\beta]^{2}$
$[\beta]=\sqrt{\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{M}^{-1} \mathrm{~T}^{2}}}=\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}$
2. Official Ans. by NTA (2)

Sol. By dimensional analysis.
3. Official Ans. by NTA (1)

Sol. $\mathrm{F}=\frac{1}{4 \pi \epsilon_{0} \mathrm{e}^{2}} ; \quad \mathrm{E}=\frac{\mathrm{hc}}{\lambda}$
$\left[\frac{\mathrm{e}^{2}}{4 \pi \varepsilon_{0}} \times \frac{1}{\mathrm{hc}}\right]=\frac{\mathrm{Fr}^{2}}{\mathrm{E} \mathrm{\lambda}}=\left(\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right)$
4. Official Ans. by NTA (2)

Sol. kT has dimension of energy
$\frac{\beta \mathrm{x}^{2}}{\mathrm{kT}}$ is dimensionless
$[\beta]\left[\mathrm{L}^{2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
$[\beta]=\left[\mathrm{MT}^{-2}\right]$
$\alpha^{2} \beta$ has dimensions of work
$\left[\alpha^{2}\right]\left[\mathrm{MT}^{-2}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
$[\alpha]=\left[\mathrm{M}^{0} \mathrm{LT}^{0}\right]$
Ans. 2
5. Official Ans. by NTA (4)

Sol. $\lambda=\frac{\mathrm{C}}{\mathrm{V}}=\frac{\mathrm{Q} / \mathrm{V}}{\mathrm{V}}=\frac{\mathrm{Q}}{\mathrm{V}^{2}}$
$\mathrm{V}=\frac{\text { work }}{\mathrm{Q}}$
$\lambda=\frac{\mathrm{Q}^{3}}{(\text { work })^{2}}=\frac{(\mathrm{It})^{3}}{\left(\mathrm{~F} . \mathrm{s}^{2}\right.}$
$=\frac{\left[\mathrm{I}^{3} \mathrm{~T}^{3}\right]}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]^{2}}=\left[\mathrm{M}^{-2} \mathrm{~L}^{-4} \mathrm{I}^{3} \mathrm{~T}^{7}\right]$
6. Official Ans. by NTA (4)

Sol. $m \propto t^{a} v^{b} \ell^{c}$
$m \propto[T]^{a}\left[\mathrm{LT}^{-1}\right]^{b}\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{c}$
$\mathrm{M}^{1} \mathrm{~L}^{0} \mathrm{~T}^{0}=\mathrm{M}^{\mathrm{c}} \mathrm{L}^{\mathrm{b}+2 \mathrm{c}} \mathrm{T}^{\mathrm{ab}-\mathrm{c}}$
comparing powers
$\mathrm{c}=1, \mathrm{~b}=-2, \mathrm{a}=-1$
$\mathrm{m} \propto \mathrm{t}^{-1} \mathrm{v}^{-2} \ell^{1}$
7. Official Ans. by NTA (2)

Sol. $[\mathrm{A}]=\left[\mathrm{MLT}^{-2}\right]$
$[\mathrm{B}]=\left[\mathrm{L}^{-1}\right]$
[D] $=\left[\mathrm{T}^{-1}\right]$
$\left[\frac{\mathrm{AD}}{\mathrm{B}}\right]=\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{T}^{-1}\right]}{\left[\mathrm{L}^{-1}\right]}$
$\left[\frac{\mathrm{AD}}{\mathrm{B}}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$
8. Official Ans. by NTA (4)

Sol. $\mathrm{E}=\mathrm{ML}^{2} \mathrm{~T}^{-2}$
$\mathrm{L}=\mathrm{ML}^{2} \mathrm{~T}^{-1}$
$\mathrm{m}=\mathrm{M}$
$\mathrm{G}=\mathrm{M}^{-1} \mathrm{~L}^{+3} \mathrm{~T}^{-2}$
$\mathrm{P}=\frac{\mathrm{EL}^{2}}{\mathrm{M}^{5} \mathrm{G}^{2}}$
$[P]=\frac{\left(\mathrm{ML}^{2} \mathrm{~T}^{-2}\right)\left(\mathrm{M}^{2} \mathrm{~L}^{4} \mathrm{~T}^{-2}\right)}{\mathrm{M}^{5}\left(\mathrm{M}^{-2} \mathrm{~L}^{6} \mathrm{~T}^{-4}\right)}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}$
Option (4)
9. Official Ans. by NTA (4)

Sol. (a) Magnetic Induction $=\mathrm{MT}^{-2} \mathrm{~A}^{-1}$
(b) Magnetic Flux $=\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}$
(c) Magnetic Permeability $=\mathrm{MLT}^{-2} \mathrm{~A}^{-2}$
(d) Magnetization $=\mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~A}$

Ans. 4
10. Official Ans. by NTA (3)

Sol. $\left[\mu_{\mathrm{r}}\right]=1$ as $\mu_{\mathrm{r}}=\frac{\mu}{\mu_{\mathrm{m}}}$
$[$ power factor $(\cos \phi)]=1$
$\mu_{0}=\frac{\mathrm{B}_{0}}{\mathrm{H}}\left(\right.$ unit $\left.=\mathrm{NA}^{-2}\right):$ Not dimensionless
$\left[\mu_{0}\right]=\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
quality factor $(\mathrm{Q})=\frac{\text { Energy stored }}{\text { Energy dissipated per cycle }}$
So Q is unitless \& dimensionless.
11. Official Ans. by NTA (1)

Sol. Unit of $\frac{\mathrm{E}}{\mathrm{H}}$ is $\frac{\text { volt / metre }}{\text { Ampere / metre }}$
$=\frac{\text { volt }}{\text { Ampere }}=$ ohm
12. Official Ans. by NTA (2)

Sol. SI unit of Rydberg const. $=\mathrm{m}^{-1}$
SI unit of Plank's const. $=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$
SI unit of Magnetic field energy density $=\mathrm{kg} \mathrm{m}^{-}$ ${ }^{1} \mathrm{~S}^{-2}$
SI unit of coeff. of viscosity $=\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$
13. Official Ans. by NTA (1)

Sol. Density $=\left[F^{a} L^{b} T^{c}\right]$
$\left[\mathrm{ML}^{-3}\right]=\left[\mathrm{M}^{\mathrm{a}} \mathrm{L}^{\mathrm{a}} \mathrm{T}^{-2 \mathrm{a}} \mathrm{L}^{\mathrm{b}} \mathrm{T}^{\mathrm{c}}\right]$
$\left[\mathrm{M}^{1} \mathrm{~L}^{-3}\right]=\left[\mathrm{M}^{\mathrm{a}} \mathrm{L}^{\mathrm{a+b}} \mathrm{~T}^{-2 \mathrm{a}+\mathrm{c}}\right]$
$\mathrm{a}=1 ; \mathrm{a}+\mathrm{b}=-3 ;-2 \mathrm{a}+\mathrm{c}=0$
$1+\mathrm{b}=-3 \quad \mathrm{c}=2 \mathrm{a}$
$\mathrm{b}=-4 \quad \mathrm{c}=2$
So, density $=\left[\mathrm{F}^{1} \mathrm{~L}^{-4} \mathrm{~T}^{2}\right]$
14. Official Ans. by NTA (1)

Sol. torque $\tau \rightarrow \mathrm{ML}^{2} \mathrm{~T}^{-2}$ (III)
Impulse $\mathrm{I} \Rightarrow \mathrm{MLT}^{-1}$ (I)
Tension force $\Rightarrow \mathrm{MLT}^{-2}$ (IV)
Surface tension $\Rightarrow \mathrm{MT}^{-2}$ (II)
Option (1)
15. Official Ans. by NTA (1)

Sol. (i) $\frac{\pi \mathrm{pa}^{4}}{8 \eta \mathrm{~L}}=\frac{\mathrm{dv}}{\mathrm{dt}}=$ Volumetric flow rate (poiseuille's law)
(ii) $\mathrm{h} \rho \mathrm{g}=\frac{2 \mathrm{~s}}{\mathrm{r}} \cos \theta$
(iii) $\mathrm{RHS} \Rightarrow \varepsilon \times \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{a}}{\mathrm{r}^{2}} \times \frac{1}{\varepsilon}=\frac{\mathrm{q}}{\mathrm{t}} \times \frac{1}{\mathrm{r}^{2}}$
$=\frac{\mathrm{I}}{\mathrm{L}^{2}}=\mathrm{IL}^{-2}$
LHS
$\mathrm{T}=\frac{\mathrm{I}}{\mathrm{A}}=\mathrm{IL}^{-2}$
(iv) $\mathrm{W}=\tau \theta$

Option (1)
16. Official Ans. by NTA (2)

Sol. $[\mathrm{M}]=\mathrm{K}[\mathrm{F}]^{\mathrm{a}}[\mathrm{T}]^{\mathrm{b}}[\mathrm{V}]^{\mathrm{c}}$
$\left[\mathrm{M}^{1}\right]=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]^{\mathrm{a}}\left[\mathrm{T}^{1}\right]^{\mathrm{b}}\left[\mathrm{L}^{1} \mathrm{~T}^{-1}\right]^{\mathrm{c}}$
$\mathrm{a}=1, \mathrm{~b}=1, \mathrm{c}=-1$
$\therefore[\mathrm{M}]=\left[\mathrm{FTV}^{-1}\right]$

