PERMUTATION \& COMBINATION

1. There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is \qquad .
2. If the digits are not allowed to repeat in any number formed by using the digits $0,2,4,6,8$, then the number of all numbers greater than 10,000 is equal to \qquad -.
3. There are 5 students in class 10,6 students in class 11 and 8 students in class 12 . If the number of ways, in which 10 students can be selected from them so as to include at least 2 students from each class and at most 5 students from the total 11 students of class 10 and 11 is 100 k , then k is equal to \qquad .
4. If ${ }^{n} P_{r}={ }^{n} P_{r+1}$ and ${ }^{n} C_{r}={ }^{n} C_{r-1}$, then the value of r is equal to:
(1) 1
(2) 4
(3) 2
(4) 3
5. Let n be a non-negative integer. Then the number of divisors of the form " $4 \mathrm{n}+1$ " of the number $(10)^{10} .(11)^{11} .(13)^{13}$ is equal to \qquad .
6. The number of three-digit even numbers, formed by the digits $0,1,3,4,6,7$ if the repetition of digits is not allowed, is \qquad _.
7. The sum of all 3-digit numbers less than or equal to 500 , that are formed without using the digit " 1 " and they all are multiple of 11 , is \qquad .
8. A number is called a palindrome if it reads the same backward as well as forward. For example 285582 is a six digit palindrome. The number of six digit palindromes, which are divisible by 55, is \qquad _.
9. Let $S=\{1,2,3,4,5,6,9\}$. Then the number of elements in the set $\mathrm{T}=\{\mathrm{A} \subseteq \mathrm{S}: \mathrm{A} \neq \phi$ and the sum of all the elements of A is not a multiple of $3\}$ is \qquad -.
10. The number of six letter words (with or without meaning), formed using all the letters of the word 'VOWELS', so that all the consonants never come together, is \qquad _.
11. Let $P_{1}, P_{2}, \ldots \ldots, P_{15}$ be 15 points on a circle. The number of distinct triangles formed by points P_{i}, P_{j}, P_{k} such that $i+j+k \neq 15$, is :
(1) 12
(2) 419
(3) 443
(4) 455
12. All the arrangements, with or without meaning, of the word FARMER are written excluding any word that has two R appearing together. The arrangements are listed serially in the alphabetic order as in the English dictionary. Then the serial number of the word FARMER in this list is \qquad .
13. The students $S_{1}, S_{2}, \ldots ., S_{10}$ are to be divided into 3 groups A, B and C such that each group has at least one student and the group C has at most 3 students. Then the total number of possibilities of forming such groups is \qquad .
14. A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed, is :
(1) 1625
(2) 575
(3) 560
(4) 1050
15. The total number of positive integral solutions $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ such that $\mathrm{xyz}=24$ is :
(1) 36
(2) 24
(3) 45
(4) 30
16. The total number of numbers, lying between 100 and 1000 that can be formed with the digits $1,2,3,4,5$, if the repetition of digits is not allowed and numbers are divisible by either 3 or 5 , is \qquad _.
17. Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions from the set A to the set $\mathrm{A} \times \mathrm{B}$. Then :
(1) $y=273 x$
(2) $2 y=91 x$
(3) $y=91 x$
(4) $2 y=273 x$
18. The total number of two digit numbers ' n ', such that $3^{n}+7^{n}$ is a multiple of 10 , is \qquad _.
19. The number of seven digit integers with sum of the digits equal to 10 and formed by using the digits 1,2 and 3 only is
(1) 42
(2) 82
(3) 77
(4) 35
20. A natural number has prime factorization given by $\mathrm{n}=2^{\mathrm{x}} 3^{\mathrm{y}} 5^{\mathrm{z}}$, where y and z are such that $y+z=5$ and $y^{-1}+z^{-1}=\frac{5}{6}, y>z$. Then the number of odd divisors of n, including 1 , is :
(1) 11
(2) 6
(3) $6 x$
(4) 12
21. Consider a rectangle ABCD having 5, 7, 6, 9 points in the interior of the line segments AB , $\mathrm{CD}, \mathrm{BC}, \mathrm{DA}$ respectively. Let α be the number of triangles having these points from different sides as vertices and β be the number of quadrilaterals having these points from different sides as vertices. Then $(\beta-\alpha)$ is equal to :
(1) 795
(2) 1173
(3) 1890
(4) 717
22. If the sides AB, BC and CA of a triangle ABC have 3,5 and 6 interior points respectively, then the total number of triangles that can be constructed using these points as vertices, is equal to :
(1) 364
(2) 240
(3) 333
(4) 360
23. Team 'A' consists of 7 boys and n girls and Team 'B' has 4 boys and 6 girls. If a total of 52 single matches can be arranged between these two teams when a boy plays against a boy and a girl plays against a girl, then n is equal to :
(1) 5
(2) 2
(3) 4
(4) 6
24. The sum of all the 4-digit distinct numbers that can be formed with the digits $1,2,2$ and 3 is:
(1) 26664
(2) 122664
(3) 122234
(4) 22264
25. The number of times the digit 3 will be written when listing the integers from 1 to 1000 is
26. The total number of 4-digit numbers whose greatest common divisor with 18 is 3 , is \qquad -.

SOLUTION

1. Official Ans. by NTA (777)

Sol. 15 : Players
6 : Bowlers
7 : Batsman
2 : Wicket keepers
Total number of ways for :
at least 4 bowlers, 5 batsman \& 1 wicket keeper
$={ }^{6} \mathrm{C}_{4}\left({ }^{7} \mathrm{C}_{6} \times{ }^{2} \mathrm{C}_{1}+{ }^{7} \mathrm{C}_{5} \times{ }^{2} \mathrm{C}_{2}\right)+{ }^{6} \mathrm{C}_{5} \times{ }^{7} \mathrm{C}_{5} \times{ }^{2} \mathrm{C}_{1}$
$=777$
2. Official Ans. by NTA (96)

Sol.

$$
\begin{aligned}
& \left.\begin{array}{|l|l|l|l|l|}
\hline 2,4,6,8 & & & & \\
\hline 4 & 4 & 3 & 2 & 1 \\
\hline 4 & & & & \\
\hline
\end{array}\right)=4 \times 3 \times 2=96
\end{aligned}
$$

3. Official Ans. by NTA (238)

Sol. Class $\quad 10^{\text {th }} \quad 11^{\text {th }}$ $12^{\text {th }}$

Total student
5 6 3
$\Rightarrow{ }^{5} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{5}$
$\begin{array}{llll}\text { Number of selection } & 2 & 2 & 6\end{array}$
$\Rightarrow{ }^{5} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{6}$
$3 \quad 2 \quad 5$
$\Rightarrow{ }^{5} \mathrm{C}_{3} \times{ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{5}$
\Rightarrow Total number of ways $=23800$
According to question

$$
100 \mathrm{~K}=23800
$$

$\Rightarrow \mathrm{K}=238$
4. Official Ans. by NTA (3)

Sol. ${ }^{n} P_{r}={ }^{n} P_{r+1} \Rightarrow \frac{n!}{(n-r)!}=\frac{n!}{(n-r-1)!}$
$\Rightarrow(\mathrm{n}-\mathrm{r})=1$
${ }^{n} C_{r}={ }^{n} C_{r-1}$
$\Rightarrow \frac{n!}{r!(n-r)!}=\frac{n!}{(r-1)!(n-r+1)!}$
$\Rightarrow \frac{1}{r(n-r)!}=\frac{1}{(n-r+1)(n-r)!}$
$\Rightarrow \mathrm{n}-\mathrm{r}+1=\mathrm{r}$
$\Rightarrow \mathrm{n}+1=2 \mathrm{r}$
(1) $\Rightarrow 2 \mathrm{r}-1-\mathrm{r}=1 \Rightarrow \mathrm{r}=2$
5. Official Ans. by NTA (924)

Sol. $\mathrm{N}=2^{10} \times 5^{10} \times 11^{11} \times 13^{13}$
Now, power of 2 must be zero, power of 5 can be anything, power of 13 can be anything.

But, power of 11 should be even.
So, required number of divisors is
$1 \times 11 \times 14 \times 6=924$
6. Official Ans. by NTA (52)

Sol. (i) When '0' is at unit place

Number of numbers $=20$
(ii) When 4 or 6 are at unit place

Number of numbers $=32$
So number of numbers $=52$
7. Official Ans. by NTA (7744)

So1. $209,220,231, \ldots, 495$
Sum $=\frac{27}{2}(209+495)=9504$
$\begin{array}{llll} & \begin{array}{l}2 \\ 3\end{array} & \underline{1} \\ \text { Number containing } 1 \text { at unit place } & \underline{3} & \underline{4} & \underline{1} \\ & \underline{4} & \underline{5} & \underline{1} \\ & & & \\ \text { Number containing } 1 \text { at } 10^{\text {th }} \text { place } & \underline{3} & \underline{1} & \underline{9} \\ & \underline{4} & \underline{1} & \underline{8}\end{array}$
Required $=9501-(231+341+451+319+418)$
7744

8. Official Ans. by NTA (100)

Sol.

It is always divisible by 5 and 11 .
So, required number $=10 \times 10=100$
9. Official Ans. by NTA (80)

Sol. $3 n$ type $\rightarrow 3,6,9=P$
$3 \mathrm{n}-1$ type $\rightarrow 2,5=\mathrm{Q}$
$3 \mathrm{n}-2$ type $\rightarrow 1,4=\mathrm{R}$
number of subset of S containing one element which are not divisible by $3={ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{1}=4$ number of subset of S containing two numbers whose some is not divisible by 3
$={ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}=14$
number of subsets containing 3 elements whose sum is not divisible by 3
$={ }^{3} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{1}+\left({ }^{2} \mathrm{C}_{2} \times{ }^{2} \mathrm{C}_{1}\right) 2+{ }^{3} \mathrm{C}_{1}\left({ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}\right)=22$
number of subsets containing 4 elements whose sum is not divisible by 3
$={ }^{3} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}\left({ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}\right)+\left({ }^{3} \mathrm{C}_{1}{ }^{2} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{2}\right) 2$
$=4+6+12=22$.
number of subsets of S containing 5 elements whose sum is not divisible by 3 .
$={ }^{3} \mathrm{C}_{3}\left({ }^{2} \mathrm{C}_{2}+{ }^{2} \mathrm{C}_{2}\right)+\left({ }^{3} \mathrm{C}_{2}{ }^{2} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{2}\right) \times 2=2+12=14$
number of subsets of S containing 6 elements whose sum is not divisible by $3=4$
\Rightarrow Total subsets of Set A whose sum of digits is not divisible by $3=4+14+22+22+14+4=80$.
10. Official Ans. by NTA (576)

Sol. VOWELS 2 Vowels

4 Consonants

All Consonants should not be together
$=$ Total - All consonants together,
$=6!-3!4!=576$
11. Official Ans. by NTA (3)

Sol. Total Number of Triangles $={ }^{15} \mathrm{C}_{3}$
$\mathrm{i}+\mathrm{j}+\mathrm{k}=15$ (Given)

5	5 Cases		4 Cases			3 Cases			1 Cases		
i	j	k	i	j	k	i	j	k i	i	j	k
1	2	12	2	3	10	3	4	8	4	5	6
1	3	11	2	4	9	3	5	7			
1	4	10	2	5	8						
1	5	9	2	6	7						
1	6	8									

Number of Possible triangles using the vertices P_{i}, P_{j}, P_{k} such that $i+j+k \neq 15$ is equal to ${ }^{15} \mathrm{C}_{3}-12=443$ Option (3)
12. Official Ans. by NTA (77)

Sol. FARMER (6)
A, E, F, M, R, R

A					
E					
F	A	E			
F	A	M			
F	A	R	E		
F	A	R	M	E	R

$\frac{\underline{5}}{\boxed{2}}-\underline{4}=60-24=36$
$\frac{\boxed{3}}{\boxed{2}}-\underline{2}=3-2=1$
$=1$
$=2$
$=1$
13. Official Ans. by NTA (31650)

Sol. If group C has one student then number of groups
${ }^{10} \mathrm{C}_{1}\left[2^{9}-2\right]=5100$
If group C has two students then number of groups
${ }^{10} \mathrm{C}_{2}\left[2^{8}-2\right]=11430$
If group C has three students then number of groups
$={ }^{10} \mathrm{C}_{3} \times\left[2^{7}-2\right]=15120$
So total groups $=31650$
14. Official Ans. by NTA (1)

Sol.

Indians	Foreigners	Number of ways
2	4	${ }^{6} \mathrm{C}_{2} \times{ }^{8} \mathrm{C}_{4}=1050$
3	6	${ }^{6} \mathrm{C}_{3} \times{ }^{8} \mathrm{C}_{6}=560$
4	8	${ }^{6} \mathrm{C}_{4} \times{ }^{8} \mathrm{C}_{8}=15$

Total number of ways $=1625$
15. Official Ans. by NTA (4)

Sol. $\mathrm{xyz}=2^{3} \times 3^{1}$
Let $x=2^{\alpha_{1}} \times 3^{\beta_{1}}$
$y=2^{\alpha_{2}} \times 3^{\beta_{2}}$
$\mathrm{z}=2^{\alpha_{3}} \times 3^{\beta_{2}}$
Now $\alpha_{1}+\alpha_{2}+\alpha_{3}=3$.
No. of non-negative intergal sol $={ }^{5} \mathrm{C}_{2}=10$
$\& \beta_{1}+\beta_{2}+\beta_{3}=1$
No. of non-negative intergal soln $={ }^{3} \mathrm{C}_{2}=3$
Total ways $=10 \times 3=30$.
16. Official Ans. by NTA (32)

Sol. We need three digits numbers.
Since $1+2+3+4+5=15$
So, number of possible triplets for multiple of 15 is $1 \times 2 \times 2$
so Ans. $=4 \times \underline{3}+4 \times 3-1 \times 2 \times \underline{2}=32$
17. Official Ans. by NTA (2)

Sol. $x={ }^{5} C_{3} \times 3!=60$
$y={ }^{15} C_{3} \times 3!=15 \times 14 \times 13=30 \times 91$
$\therefore 2 y=91 x$
18. Official Ans. by NTA (45)

Sol. for $3^{\mathrm{n}}+7^{\mathrm{n}}$ to be divisible by 10
n can be any odd number
\therefore Number of odd two digit numbers $=45$
19. Official Ans. by NTA (3)

Sol. (I) First possiblity is $1,1,1,1,1,2,3$

$$
\text { required number }=\frac{7!}{5!}=7 \times 6=42
$$

(II) Second possiblity is 1, 1, 1, 1, 2, 2, 2 required number $=\frac{7!}{4!3!}=\frac{7 \times 6 \times 5}{6}=35$ Total $=42+35=77$
20. Official Ans. by NTA (4)

Sol. $y+z=5$
$\frac{1}{y}+\frac{1}{z}=\frac{5}{6} \quad y>z$
$\Rightarrow \mathrm{y}=3, \mathrm{z}=2$
$\Rightarrow \mathrm{n}=2^{\mathrm{x}} .3^{3} .5^{2}=(2.2 .2 \ldots$...) (3.3.3) (5.5)
Number of odd divisors $=4 \times 3=12$
21. Official Ans by NTA (4)

Sol.

$\alpha=$ Number of triangles
$\alpha=5 \cdot 6 \cdot 7+5 \cdot 7 \cdot 9+5 \cdot 6 \cdot 9+6 \cdot 7 \cdot 9$
$=210+315+270+378$
$=1173$
$\beta=$ Number of Quadrilateral
$\beta=5 \cdot 6 \cdot 7 \cdot 9=1890$
$\beta-\alpha=1890-1173=717$
22. Official Ans. by NTA (3)

Sol.

Total Number of triangles formed
$={ }^{14} \mathrm{C}_{3}-{ }^{3} \mathrm{C}_{3}-{ }^{5} \mathrm{C}_{3}-{ }^{6} \mathrm{C}_{3}$
$=333$
Option (3)
23. Official Ans. by NTA (3)

Sol. Total matches between boys of both team

$$
={ }^{7} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}=28
$$

Total matches between girls of both
team $={ }^{n} C_{1}{ }^{6} C_{1}=6 n$
Now, $28+6 n=52$
$\Rightarrow \mathrm{n}=4$
24. Official Ans. by NTA (1)

Sol. Digits are 1, 2, 2, 3
total distinct numbers $\frac{4!}{2!}=12$.
total numbers when 1 at unit place is 3 .
2 at unit place is 6 3 at unit place is 3 .

$$
\begin{aligned}
\text { So, sum }= & (3+12+9)\left(10^{3}+10^{2}+10+1\right) \\
= & (1111) \times 24 \\
& =26664
\end{aligned}
$$

25. Official Ans. by NTA (300)

Sol. $3_{-}=10 \times 10=100$
_3 _ $=10 \times 10=100$
$--3=10 \times 10=\frac{100}{300}$
26. Official Ans. by NTA (1000)

Sol. Let N be the four digit number

$$
\operatorname{gcd}(\mathrm{N}, 18)=3
$$

Hence N is an odd integer which is divisible by 3 but not by 9 .

4 digit odd multiples of 3
1005, 1011,......., $9999 \rightarrow 1500$
4 digit odd multiples of 9
1017, 1035,......., $9999 \rightarrow 500$
Hence number of such $\mathrm{N}=1000$

