1. Assuming ideal behaviour, the magnitude of log K for the following reaction at 25°C is $x \times 10^{-1}$. The value of x is

(Integer answer)

$$3HC \equiv CH_{(g)} = C_6H_{6(\ell)}$$

[Given: $\Delta_f G^o(HC \equiv CH) = -2.04 \times 10^5 \text{ J mol}^{-1}$;

$$\Delta_f G^o(C_6H_6) = -1.24 \times 10^5 \text{ J mol}^{-1};$$

 $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

2. The reaction of cyanamide, NH₂CN_(s) with oxygen was run in a bomb calorimeter and ΔU was found to be -742.24 kJ mol-1. The magnitude of ΔH_{298} for the reaction

$$NH_2CN_{(s)} + \frac{3}{2}O_2(g) \rightarrow N_{2(g)} + O_2(g) + H_2O_{(l)}$$

is kJ. (Rounded off to the nearest integer)

[Assume ideal gases and $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$]

For the reaction $A(g) \rightleftharpoons B(g)$ at 495 K, 3. $\Delta_r G^o = -9.478 \text{ kJ mol}^{-1}$

> If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B is the equilibrium mixture is millimoles. (Round off to the Nearest Integer). $[R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}; \ln 10 = 2.303]$

At 25°C, 50 g of iron reacts with HCl to form 4. FeCl₂. The evolved hydrogen gas expands against a constant pressure of 1 bar. The work done by the gas during this expansion is J. (Round off to the Nearest Integer)

> [Given : $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$. Assume, hydrogen is an ideal gas]

[Atomic mass of Fe is 55.85 u]

- 5. During which of the following processes, does entropy decrease?
 - (A) Freezing of water to ice at 0°C
 - (B) Freezing of water to ice at -10° C
 - (C) $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
 - (D) Adsorption of CO(g) and lead surface
 - (E) Dissolution of NaCl in water
 - (1) (A), (B), (C) and (D) only
 - (2) (B) and (C) only
 - (3) (A) and (E) only
 - (4) (A), (C) and (E) only
- 6. The gas phase reaction

$$2A(g) \Longrightarrow A_2(g)$$

at 400 K has $\Delta G^{\circ} = +25.2 \text{ kJ mol}^{-1}$.

The equilibrium constant K_C for this reaction is × 10-2. (Round off to the Nearest integer)

[Use : $R = 8.3 \text{ J mol}^{-1}\text{K}^{-1}$, $\ln 10 = 2.3$

$$log_{10} 2 = 0.30, 1 atm = 1 bar$$

[antilog (-0.3) = 0.501]

- 7. If the standard molar enthalpy change for combustion of graphite powder is -2.48×10^2 kJ mol⁻¹, the amount of heat generated on combustion of 1 g of graphite powder is kJ. (Nearest integer)
- At 298.2 K the relationship between enthalpy of 8. bond dissociation (in kJ mol⁻¹) for hydrogen (E_H) and its isotope, deuterium (E_D), is best described by:

(1)
$$E_H = \frac{1}{2} E_D$$

$$(2) E_{\rm H} = E_{\rm D}$$

(3)
$$E_H \simeq E_D - 7.5$$
 (4) $E_H = 2E_D$

$$(4) E_{H} = 2E_{D}$$

9. At 298 K, the enthalpy of fusion of a solid (X) is 2.8 kJ mol⁻¹ and the enthalpy of vaporisation of the liquid (X) is 98.2 kJ mol⁻¹. The enthalpy of sublimation of the substance (X) in kJ mol⁻¹ is

(in nearest integer)

10. A home owner uses 4.00×10^3 m³ of methane (CH₄) gas, (assume CH₄ is an ideal gas) in a year to heat his home.

Under the pressure of 1.0 atm and 300 K, mass of gas used is $x \times 10^5$ g. The value of x is _____. (Nearest integer)

(Given $R = 0.083 L atm K^{-1} mol^{-1}$)

11. A system does 200 J of work and at the same time absorbs 150 J of heat. The magnitude of the change in internal energy is _____ J. (Nearest integer)

12. For water at 100°C and 1 bar,

$$\Delta_{vap} \; H - \Delta_{vap} \; U = \underline{\hspace{1cm}} \times \; 10^2 \; J \; mol^{-1}. \label{eq:delta_vap}$$

(Round off to the Nearest Integer)

[Use : $R=8.31 \text{ J mol}^{-1} \text{ K}^{-1}$]

[Assume volume of $H_2O(l)$ is much smaller than volume of $H_2O(g)$. Assume $H_2O(g)$ treated as an ideal gas]

13. An average person needs about 10000 kJ energy per day. The amount of glucose (molar mass = 180.0 g mol⁻¹) needed to meet this energy requirement is _____ g.

(Use : $\Delta_{\rm C}$ H(glucose) = $-2700 \text{ kJ mol}^{-1}$)

1. Official Ans. by NTA (855)

Sol.
$$3HC \equiv CH_{(g)} \rightarrow C_6H_6(\ell): \Delta G^0 = -RT \ln k$$

$$\Delta G_f^0 - 2.04 \times 10^5 \frac{J}{\text{mol}} - 1.24 \times 10^5 \text{ J/mol}$$

$$\Rightarrow \Delta G^0 = \sum (\Delta G_f^0)_p - \sum (\Delta G_f^0)_p$$

$$\Rightarrow -RT \ln k = 1 \times (-124 \times 10^5) - (-3 \times 2.04 \times 10^5)$$

$$\Rightarrow$$
 -2.303 × R × T log k = 4.88 × 10⁵

$$\Rightarrow \log k = -\frac{4.88 \times 10^5}{2.303 \times R \times T} = -\frac{488000}{5705.848} = -85.52$$

$$=855 \times 10^{-1}$$

$$\Rightarrow$$
 x = 855

2. Official Ans. by NTA (741)

Sol.
$$\Delta H = \Delta U + \Delta n_g RT$$

= $-742.24 + \frac{1}{2} \times \frac{8.314}{1000} \times 298$
= -741 kJ/mol

Hence answer is (741)

3. Official Ans. by NTA (20)

Sol.
$$\Delta G^{\circ} = -RT \, \ln K_{eq}$$

Given $\Delta G^{\circ} = -9.478 \, \text{KJ/mole}$
 $T = 495 \text{K} \, R = 8.314 \, \text{J mol}^{-1}$
So $-9.478 \times 10^3 = -495 \times 8.314 \times \ln K_{eq}$
 $\ln K_{eq} = 2.303$

$$= \ell n \ 10$$
So $K_{eq} = 10$

Now
$$A(g) \rightleftharpoons B(g)$$

 $t = 0$ 22 0

$$t = t \quad 22-x \quad x$$

$$K_{eq} = \frac{[B]}{[C]} = \frac{x}{22 - x} = 10$$

or
$$x = 20$$

So millmoles of B = 20

4. Official Ans. by NTA (2218)

Sol.
$$T = 298 \text{ K}, R = 8.314 \frac{J}{\text{mol K}}$$

→ Chemical reaction is

$$Fe + 2HCl \rightarrow FeCl_2 + H_2(g)$$

$$50g P = 1 bar$$

$$= \frac{50}{55.85} mol \frac{50}{55.85} mol$$

 \rightarrow Work done for 1 mol gas

$$= -P_{ext} \times \Delta V$$

$$= \Delta ng RT$$

$$= -1 \times 8.314 \times 298 \text{ J}$$

 \rightarrow Work done for $\frac{50}{55.85}$ mol of gas

$$= -1.8314 \times 298 \times \frac{50}{55.85} J$$

$$=$$
 $-2218.059 J$

$$\simeq$$
 -2218 J

5. Official Ans. by NTA (1)

Sol. (A) Water
$$\xrightarrow{0^{\circ}C}$$
 ice; $\Delta S = -ve$

(B) Water
$$\xrightarrow{-10^{\circ}\text{C}}$$
 ice; $\Delta S = -\text{ve}$

(C)
$$N_2(g) + 3H_2(g) \rightarrow 2NH_2(g); \Delta S = -ve$$

(D) Adsorption;
$$\Delta S = -ve$$

(E) NaCl(s)
$$\rightarrow$$
 Na⁺(aq) + Cl⁻(aq); Δ S = +ve

6. Official Ans. by NTA (166)

Official Ans. by ALLEN (2)

$$\Delta_r G^0 = -RT \ln K_n$$

$$25200 = -2.3 \times 8.3 \times 400 \log(K_{p})$$

$$K_p = 10^{-3.3} = 10^{-3} \times 0.501$$

$$= 5.01 \times 10^{-4} \, \mathrm{Bar}^{-1}$$

$$= 5.01 \times 10^{-9} \text{ Pa}^{-1}$$

$$=\frac{\mathrm{K_{C}}}{8.3\times400}$$

$$K_C = 1.66 \times 10^{-5} \text{ m}^3/\text{mole}$$

$$= 1.66 \times 10^{-2} \text{ L/mol}$$

$$Ans = 2$$

7. Official Ans. by NTA (21)

Sol. 1 mol graphite = 12 gm C

Ans. =
$$\frac{248}{12}$$
 = 20.67kJ/gm heat evolved

8. Official Ans. by NTA (3)

Sol. Enthalpy of bond dissociation (kJ/mole) at 298.2K

For , hydrogen = 435.88

For , Deuterium = 443.35

$$\therefore E_{\rm H} \simeq E_{\rm D} - 7.5$$

9. Official Ans. by NTA (101)

Sol.
$$\Delta H_{\text{sub}} = \Delta H_{\text{fus.}} + \Delta H_{\text{vap.}}$$

$$= 2.8 + 98.2$$

= 101 kJ/mol

10. Official Ans. by NTA (26)

Sol.
$$n(CH_4) = \frac{PV}{RT}$$

$$=\frac{1\times4\times10^3\times1000}{0.083\times300}$$

Weight of CH₄

$$=\frac{40\times16\times10^5}{0.083\times300}$$
gm

$$= 25.7 \times 10^5 \text{ gm}$$

11. Official Ans. by NTA (50)

Sol.
$$w = -200 J, q = +150 : \Delta U = q + w$$

$$\Delta U = 150 - 200 = -50 \text{ J}$$
: magnitude = 50 J

$$= |\Delta U|$$

12. Official Ans. by NTA (31)

Sol.
$$H_2O_{(\ell)} \Longrightarrow H_2O_{(V)}$$

$$\Delta H = \Delta U + \Delta n_g RT$$

for 1 mole waters; $\Delta n_g = 1$

$$\therefore \Delta n_g RT = 1 \text{ mol} \times 8.31 \text{ J/mol-k} \times 373 \text{ K}$$

$$= 3099.63 \text{ J} \cong 31 \times 10^2 \text{ J}$$

Official Ans. by NTA (667)

Sol. 1 mole glucose give 2700 kJ energy so mole of glucose needed for 10⁵ kJ energy

$$=\frac{10000}{2700}$$
 = 370 moles

13.

wt. of glucose =
$$3.10 \times 180$$

$$\frac{Y_{\text{Benzene}}}{Y_{\text{M.B}}} = \frac{P_{\text{B}}^{0} X_{\text{B}}}{P_{\text{MB}}^{0} X_{\text{MB}}} = \frac{70 \times 1}{20 \times 1} = \frac{7}{2}$$

$$Y_{Benzene} = \frac{7}{9} = 77.77 \times 10^{-2}$$

$$= 78 \times 10^{-12}$$