THERMOCHEMISTRY

- 1. For the reaction $A_{(g)} \rightarrow (B)_{(g)}$, the value of the equilibrium constant at 300 K and 1 atm is equal to 100.0. The value of $\Delta_r G$ for the reaction at 300 K and 1 atm in J mol⁻¹ is xR, where x is _____ (Rounded off to the nearest integer) $(R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1} \text{ and } \ln 10 = 2.3)$
- 2. The ionization enthalpy of Na⁺ formation from Na_(g) is 495.8 kJ mol⁻¹, while the electron gain enthalpy of Br is -325.0 kJ mol⁻¹. Given the lattice enthalpy of NaBr is -728.4 kJ mol⁻¹. The energy for the formation of NaBr ionic solid is (-) _____ × 10⁻¹ kJ mol⁻¹.
- 3. For a chemical reaction $A+B \rightleftharpoons C+D$ $(\Delta_r H^0 = 80 k J \mod^{-1}) \ \ \text{the entropy change}$ $\Delta_r S^0 \ \text{depends on the temperature } T \ \ \text{(in } K) \ \text{as}$ $(\Delta_r S^0 = 2T \ (J \ K^{-1} \mod^{-1}).$ Minimum temperature at which it will become

Minimum temperature at which it will become spontaneous is _____K.(Integer)

4. The average S–F bond energy in kJ mol^{-1} of SF₆ is _____.(Rounded off to the nearest integer)

[Given : The values of standard enthalpy of formation of $SF_6(g)$, S(g) and F(g) are -1100, 275 and 80 kJ mol⁻¹ respectively.]

5. The standard enthalpies of formation of Al_2O_3 and CaO are -1675 kJ mol $^{-1}$ and -635 kJ mol $^{-1}$ respectively.

For the reaction

3CaO + 2Al \rightarrow 3Ca + Al₂O₃ the standard reaction enthalpy $\Delta_r H^0 =$ _____ kJ.

(Round off to the Nearest Integer).

- For the reaction C₂H₆ → C₂H₄ + H₂
 the reaction enthalpy Δ_rH = _____ kJ mol⁻¹.
 (Round off to the Nearest Integer).
 [Given: Bond enthalpies in kJ mol⁻¹: C-C: 347, C=C: 611; C-H: 414, H-H: 436]
- 7. The Born-Haber cycle for KCl is evaluated with the following data:

$$\Delta_f H^{\circ}$$
 for KCl= -436.7 kJ mol⁻¹;

$$\Delta_{\text{sub}} \text{H}^{\odot} \text{ for K} = 89.2 \text{ kJ mol}^{-1};$$

$$\Delta_{ionization} H^{\odot}$$
 for $K = 419.0 \text{ kJ mol}^{-1}$; $\Delta_{electron gain} H^{\odot}$

for
$$Cl_{(g)} = -348.6 \text{ kJ mol}^{-1}$$
; $\Delta_{bond} \text{ H}^{\odot}$ for $Cl_2 = 243.0 \text{ kJ mol}^{-1}$

The magnitude of lattice enthalpy of KCl in kJ mol⁻¹ is (Nearest integer)

- 8. For water Δ_{vap} H = 41 kJ mol⁻¹ at 373 K and 1 bar pressure. Assuming that water vapour is an ideal gas that occupies a much larger volume than liquid water, the internal energy change during evaporation of water is ____kJ mol⁻¹ [Use: R = 8.3 J mol⁻¹ K⁻¹]
- 9. 200 mL of 0.2 M HCl is mixed with 300 mL of 0.1 M NaOH. The molar heat of neutralization of this reaction is -57.1 kJ. The increase in temperature in °C of the system on mixing is $x \times 10^{-2}$. The value of x is _____. (Nearest integer)

[Given : Specific heat of water = $4.18 \text{ J g}^{-1} \text{ K}^{-1}$ Density of water = 1.00 g cm^{-3}]

(Assume no volume change on mixing)

E

10. Data given for the following reaction is as follows:

$$FeO_{(s)} + C_{(graphite)} \longrightarrow Fe_{(s)} + CO_{(g)}$$

Substance	ΔH°	$\Delta \mathrm{S}^{\circ}$
	(kJ mol ⁻¹)	$(J \text{ mol}^{-1} \text{K}^{-1})$
FeO _(s)	-266.3	57.49
$C_{(graphite)}$	0	5.74
Fe _(s)	0	27.28
$CO_{(g)}$	-110.5	197.6

The minimum temperature in K at which the reaction becomes spontaneous is _____. (Integer answer)

11. The **incorrect** expression among the following is:

(1)
$$\frac{\Delta G_{System}}{\Delta S_{Total}} = -T(at constant P)$$

(2)
$$\ln K = \frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}$$

(3)
$$K = e^{-\Delta G^{\circ}/RT}$$

(4) For isothermal process w_{reversible}

$$= - nRT ln \frac{V_f}{V_i}$$

12. For the reaction $2NO_2(g) \rightleftharpoons N_2O_4(g)$, when $\Delta S = -176.0 \text{ JK}^{-1}$ and $\Delta H = -57.8 \text{ kJ mol}^{-1}$, the magnitude of ΔG at 298 K for the reaction is ____ kJ mol⁻¹. (Nearest integer)

SOLUTION

1. Official Ans. by NTA (1380)

Sol.
$$\Delta G^{o} = -RT \ln Kp$$

= $-R(300) (2) \ln(10)$
= $-R(300 \times 2 \times 2.3)$
 $\Delta G^{o} = -1380 R$

2. Official Ans. by NTA (5576)

Sol.
$$Na(g) + Br(g) \longrightarrow NaBr(s)$$
 $IE_1 \longrightarrow \Delta Heg_1 \longrightarrow L.E.$
 $Na^+(g) + Br^-(g) \longrightarrow L.E.$

$$\Delta H_{formation} = IE_1 + \Delta Heg_1 + LE$$

$$= 495.8 + (-325) + (-728.4)$$

$$= -557.6$$

$$= -557.6 \times 10^{-1} \text{ KJ/mol.}$$

Note: The above calculation is not for $\Delta H_{formation}$

but for $\Delta H_{Reaction}$.

But on the basis of given data it is the best ans.

3. Official Ans. by NTA (200)

Sol.
$$\Delta G^0 = \Delta H^0 - T \times \Delta S^0$$

 $\Delta G^0 = \Delta H^0 - T \times (2T)$
 $T = 200K$

4. Official Ans by NTA (309)

$$\begin{split} & \textbf{Sol.} \quad SF_6(g) \, \to \, S(g) \, + \, 6F(g) \\ & \text{If } \in \text{- bond enthalpy} \\ & \Delta_r H = 6 \times \, \epsilon_{S-F} \\ & = \Delta_f H(S,g) + 6 \times \Delta_f H(F,g) \, - \Delta_f H(SF_6,\,g) \\ & = 275 + 6 \times 80 - (-1100) \\ & = 1855 \text{ kJ} \\ & \epsilon_{S-F} = \frac{1855}{6} = 309.16 \text{ kJ/mol.} \end{split}$$

5. Official Ans. by NTA (230)

Sol. Given reaction:
$$3\text{CaO} + \text{Al} \rightarrow \text{Al}_2\text{O}_3 + 3\text{Ca}$$
Now, $\Delta_r \text{H}^\circ = \Sigma \Delta_f \text{H}^\circ_{\text{Products}} - \Sigma \Delta_f \text{H}^\circ_{\text{Reactants}}$

$$= [1 \times (-1675) + 3 \times 0] - [3 \times (-635) + 2 \times 0]$$

$$= + 230 \text{ kJ mol}^{-1}$$

6. Official Ans. by NTA (128)

Sol.
$$\Delta_{r}H = [\epsilon_{C-C} + 2\epsilon_{C-H}] - [\epsilon_{C-C} + \epsilon_{H-H}]$$

= $[347 + 2 \times 414] - [611 + 436]$
= 128

7. Official Ans. by NTA (718)

Sol.
$$\Delta_f H^{\Theta}_{KCl} = \Delta_{sub} H^{\Theta}_{(K)} + \Delta_{ionization} H^{\Theta}_{(K)} + \frac{1}{2} \Delta_{bond} H^{\Theta}_{(Cl_2)}$$

$$+ \Delta_{electron \ gain} H^{\Theta}_{(Cl)} + \Delta_{lattice} H^{\Theta}_{(KCl)}$$

$$\Rightarrow -436.7 = 89.2 + 419.0 +$$

$$\frac{1}{2} (243.0) + \{-348.6\} + \Delta_{lattice} H^{\Theta}_{(KCl)}$$

$$\Rightarrow \Delta_{lattice} H^{\Theta}_{(KCl)} = -717.8 \text{ kJ mol}^{-1}$$

The magnitude of lattice enthalpy of KCl in kJ mol⁻¹ is 718 (Nearest integer).

8. Official Ans. by NTA (38)

Sol. Given equation is

$$H_2O(\ell) \longrightarrow H_2O(g) : \Delta H = 41 \frac{kJ}{mol}$$

⇒ From the relation : $\Delta H = \Delta U + \Delta n_g RT$ ⇒ $41 \frac{kJ}{mol} = \Delta U + (1) \times \frac{8.3}{1000} \times 373$

$$\Rightarrow$$
 DU = 41 – 3.0959

= 38 kJ/mol

node06\B0BA-BB\Kota\UEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Thermache

E

9. Official Ans. by NTA (82)

Sol.
$$\Rightarrow$$
 Millimoles of HCl = $200 \times 0.2 = 40$

$$\Rightarrow$$
 Millimoles of NaOH = 300 \times 0.1 = 30

$$\Rightarrow$$
 Heat released = $\left(\frac{30}{1000} \times 57.1 \times 1000\right) = 1713 \text{ J}$

$$\Rightarrow$$
 Mass of solution = 500 ml \times 1 gm/ml = 500 gm

$$\Rightarrow \Delta T = \frac{q}{m \times C} = \frac{1713J}{500g \times 4.18 \frac{J}{g - K}} = 0.8196K$$

$$= 81.96 \times 10^{-2} \text{ K}$$

10. Official Ans. by NTA (964)

Sol.
$$T_{min} = \left(\frac{\Delta^0 H}{\Delta^0 S}\right)$$

$$\Delta^{0}H_{rxn} = \left[\Delta_{f}^{0}H(Fe) + \Delta_{f}^{0}H(CO)\right] -$$

$$= \left[\Delta_{f}^{0} H(FeO) + \Delta_{f}^{0} H(C_{(graphite)}) \right]$$

$$= [0 - 110.5] - [-266.3 + 0] = 155.8 \text{ kJ/mol}$$

$$\Delta^0 S_{rxn} = \left[\Delta^0 S(Fe) + \Delta^0 S(CO) \right] -$$

$$\left[\Delta^0 S(FeO) + \Delta^0 S(C_{(graphite)})\right]$$

$$= [27.28 + 197.6] - [57.49 + 5.74]$$

= 161.65 J/mol-K

$$T_{min} = \frac{155.8 \times 10^3 \text{ J/mol}}{161.65 \text{ J/mol} - \text{K}} = 963.8 \text{K}$$

 \approx 964 k (nearest integer)

11. Official Ans. by NTA (2)

$$\Delta G^{\circ} = -RT \ \ell n \ K$$

$$\Delta H^{\circ} - T\Delta S^{\circ} = -RT \ \ell n \ K$$

$$\ell nK = - \left\lceil \frac{\Delta H^{\circ} {-} \Delta S^{\circ}}{RT} \right\rceil$$

12. Official Ans. by NTA (5)

Sol.
$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G = 57.8 - \frac{298(-176)}{1000}$$

$$\Delta G = -5.352 \text{ kJ/mole}$$

|Nearest integer value| = 5

E