REDOX REACTIONS

1. (A) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$
(B) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$

Choose the correct option.
(1) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reducing and oxidising agent respectively in equation (A) and (B)
(2) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as oxidising agent in equation (A) and (B)
(3) $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as reducing agent in equation (A) and (B)
(4) $\mathrm{H}_{2} \mathrm{O}_{2}$ act as oxidizing and reducing agent respectively in equation (A) and (B)
(A) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$
(B) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
2. The reaction of sulphur in alkaline medium is the below:

$$
\mathrm{S}_{8(\mathrm{~s})}+\mathrm{aOH}_{(\mathrm{aq})}^{-} \rightarrow \mathrm{bS}_{(\mathrm{aq})}^{2-}+\mathrm{cS}_{2} \mathrm{O}_{3}^{2-}{ }_{(\mathrm{aq})}^{2}+\mathrm{dH}_{2} \mathrm{O}_{(\ell)}
$$

The values of ' a ' is \qquad . (Integer answer)
3. Which of the following equation depicts the oxidizing nature of $\mathrm{H}_{2} \mathrm{O}_{2}$?
(1) $\mathrm{KIO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{KIO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(2) $2 \mathrm{I}^{-}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
(4) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{O}_{2}$
4. In basic medium CrO_{4}^{2-} oxidises $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ to form $\mathrm{SO}_{4}{ }^{2-}$ and itself changes into $\mathrm{Cr}(\mathrm{OH})_{4}^{-}$. The volume of $0.154 \mathrm{M} \mathrm{CrO}_{4}^{2-}$ required to react with 40 mL of $0.25 \mathrm{M} \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ is \qquad mL . (Rounded-off to the nearest integer)
5. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_{4}^{-}to " A ". The oxidation state of sulphur in " A " is \qquad .
6. $2 \mathrm{MnO}_{4}^{-}+\mathrm{bC}_{2} \mathrm{O}_{4}^{2-}+\mathrm{cH}^{+} \rightarrow \mathrm{x} \mathrm{Mn}^{2+}+\mathrm{y} \mathrm{CO}_{2}+\mathrm{zH}_{2} \mathrm{O}$ If the above equation is balanced with integer coefficients, the value of c is \qquad .
(Round off to the Nearest Integer).
$2 \mathrm{MnO}_{4}^{-}+\mathrm{bC}_{2} \mathrm{O}_{4}^{2-}+\mathrm{cH}^{+} \rightarrow \mathrm{xMn}^{2+}+\mathrm{yCO}_{2}+\mathrm{zH}_{2} \mathrm{O}$
7. The exact volumes of 1 M NaOH solution required to neutralise 50 mL of $1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{3}$ solution and 100 mL of $2 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{2}$ solution, respectively, are :
(1) 100 mL and 100 mL
(2) 100 mL and 50 mL
(3) 100 mL and 200 mL
(4) 50 mL and 50 mL
8. 15 mL of aqueous solution of Fe^{2+} in acidic medium completely reacted with 20 mL of 0.03 M aqueous $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$. The molarity of the Fe^{2+} solution is \qquad $\times 10^{-2} \mathrm{M}$ (Round off to the Nearest Integer).
9. The oxidation states of nitrogen in $\mathrm{NO}, \mathrm{NO}_{2}$, $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{NO}_{3}{ }^{-}$are in the order of :
(1) $\mathrm{NO}_{3}^{-}>\mathrm{NO}_{2}>\mathrm{NO}>\mathrm{N}_{2} \mathrm{O}$
(2) $\mathrm{NO}_{2}>\mathrm{NO}_{3}^{-}>\mathrm{NO}>\mathrm{N}_{2} \mathrm{O}$
(3) $\mathrm{N}_{2} \mathrm{O}>\mathrm{NO}_{2}>\mathrm{NO}>\mathrm{NO}_{3}^{-}$
(4) $\mathrm{NO}>\mathrm{NO}_{2}>\mathrm{N}_{2} \mathrm{O}>\mathrm{NO}_{3}^{-}$
10. When 10 mL of an aqueous solution of Fe^{2+} ions was titrated in the presence of dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ using diphenylamine indicator, 15 mL of 0.02 M solution of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ was required to get the end point. The molarity of the solution containing Fe^{2+} ions is $x \times 10^{-2} \mathrm{M}$. The value of x is \qquad . (Nearest integer)
11. Identify the process in which change in the oxidation state is five :
(1) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}$
(2) $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
(3) $\mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Cr}^{3+}$
(4) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}$
12. 10.0 mL of $0.05 \mathrm{M} \mathrm{KMnO}_{4}$ solution was consumed in a titration with 10.0 mL of given oxalic acid dihydrate solution. The strength of given oxalic acid solution is . \qquad $\times 10^{-2} \mathrm{~g} / \mathrm{L}$. (Round off to the nearest integer)
13. The species given below that does NOT show disproportionation reaction is :
(1) BrO_{4}^{-}
(2) BrO^{-}
(3) BrO_{2}^{-}
(4) BrO_{3}^{-}
14. When 10 mL of an aqueous solution of KMnO_{4} was titrated in acidic medium, equal volume of 0.1 M of an aqueous solution of ferrous sulphate was required for complete discharge of colour. The strength of KMnO_{4} in grams per litre is \qquad $\times 10^{-2}$. (Nearest integer)
[Atomic mass of $\mathrm{K}=39, \mathrm{Mn}=55, \mathrm{O}=16$]
15. Match List - I with List - II.

	List -I lloid Preparation Method)	List -II(Chemical Reaction)	
(a)	Hydrolysis	(i)	$\begin{aligned} & 2 \mathrm{AuCl}_{3}+3 \mathrm{HCHO}+3 \mathrm{H}_{2} \mathrm{O} \\ & \vec{~} \\ & 2 \mathrm{Au}(\mathrm{sol})+3 \mathrm{HCOOH}+ \\ & 6 \mathrm{HC} 1 \end{aligned}$
(b)	Reduction	(ii)	$\begin{array}{\|l} \mathrm{As}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{~S} \rightarrow \\ \mathrm{As}_{2} \mathrm{~S}_{3}(\text { sol })+3 \mathrm{H}_{2} \mathrm{O} \\ \hline \end{array}$
(c)	Oxidation	(iii)	$\begin{aligned} & \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{~S} \rightarrow 3 \mathrm{~S}(\mathrm{sol}) \\ & +2 \mathrm{H}_{2} \mathrm{O} \\ & \hline \end{aligned}$
(d)	Double Decomposition	(iv)	$\begin{array}{\|l} \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \\ \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{sol})+3 \mathrm{HCl} \\ \hline \end{array}$

Choose the most appropriate answer from the options given below.
(1) (a)-(i), (b)-(iii), (c)-(ii), (d)-(iv)
(2) (a)-(iv), (b)-(i), (c)-(iii), (d)-(ii)
(3) (a)-(iv), (b)-(ii), (c)-(iii), (d)-(i)
(4) (a)-(i), (b)-(ii), (c)-(iv), (d)-(iii)

SOLUTION

1. Official Ans. by NTA (3)
(A) $\mathrm{HOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}+\mathrm{O}_{2}$

In this equation, $\mathrm{H}_{2} \mathrm{O}_{2}$ is reducing chlorine from +1 to -1 .
(B) $\mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{OH}^{-} \rightarrow 2 \mathrm{I}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ In this equation, $\mathrm{H}_{2} \mathrm{O}_{2}$ is reducing iodine from 0 to -1 .

Sol. In (A) reduction of HOCl occurs so it will be a oxidising agent hence $\mathrm{H}_{2} \mathrm{O}_{2}$ will be a reducing agent.
$\operatorname{In}(\mathrm{B})$ reduction of I_{2} occurs so it will be a oxidising agent and $\mathrm{H}_{2} \mathrm{O}_{2}$ will be a reducing agent.
2. Official Ans. by NTA (12)
$16 \mathrm{e}^{\circ}+\mathrm{S}_{8} \longrightarrow 8 \mathrm{~S}^{2-}$
Sol. $\frac{12 \mathrm{H}_{2} \mathrm{O}+\mathrm{S}_{8} \longrightarrow 4 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+24 \mathrm{H}^{+}+16 \mathrm{e}^{\ominus}}{2 \mathrm{~S}_{8}+12 \mathrm{H}_{2} \mathrm{O} \longrightarrow 8 \mathrm{~S}^{2}+4 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+24 \mathrm{H}^{+}}$
for balancing in basic medium add equal number of OH^{\ominus} that of H^{+}
$2 \mathrm{~S}_{8}+12 \mathrm{H}_{2} \mathrm{O}+24 \mathrm{OH}^{\ominus} \longrightarrow 8 \mathrm{~S}^{2-}+4 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}+$ $24 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{~S}_{8}+24 \mathrm{OH}^{\ominus} \rightarrow 8 \mathrm{~S}^{2-}+4 \mathrm{~S}_{2} \mathrm{O}_{8}{ }^{2-}+12 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{S}_{8}+12 \mathrm{OH}^{\ominus} \rightarrow 4 \mathrm{~S}^{2-}+2 \mathrm{~S}_{2} \mathrm{O}_{8}^{2-}+6 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{a}=12$
3. Official Ans. by NTA (70)

Sol. $\mathrm{P} \propto \mathrm{T}$
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \Rightarrow \frac{40}{35}=\frac{\mathrm{T}_{2}}{300}$
$\mathrm{T}_{2}=342.854 \mathrm{~K}$

$$
=69.70^{\circ} \mathrm{C} \simeq 70^{\circ} \mathrm{C}
$$

Hence answer is (70)
4. Official Ans. by NTA (173)

Sol. $\stackrel{+6}{\mathrm{C}} \mathrm{O}_{4}^{2-}+\stackrel{+2}{\mathrm{~S}_{2}} \mathrm{O}_{3}^{2-} \rightarrow \stackrel{+6}{\mathrm{~S}} \mathrm{O}_{4}^{2-}+\stackrel{+3}{\mathrm{C}} \mathrm{r}(\mathrm{OH})_{4}^{-}$ gm equi. of $\mathrm{CrO}_{4}^{2-}=\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$

$$
\begin{array}{r}
0.154 \times 3 \times v=0.25 \times 40 \times 8 \\
v=173.16=173 \mathrm{ml}
\end{array}
$$

Hence answer is (173)
5. Official Ans by NTA (6)

Sol. $\mathrm{MnO}_{4}^{-}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightarrow \stackrel{+4}{\mathrm{M}} \mathrm{nO}_{2}+\underset{(\mathrm{A})}{\mathrm{SO}_{4}^{2-}}$
Oxidation state of 'S' in $\mathrm{SO}_{4}{ }^{2-}$
$=+6$
6. Official Ans. by NTA (16)

Sol. Writting the half reaction oxidation half reaction
$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$
balancing oxygen
$\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
balancing Hydrogen
$8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
balancing charge
$5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
Reduction half
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{CO}_{2}$
Balancing carbon
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}$
Balancing charge
$\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$
Net equation
$16 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 10 \mathrm{CO}_{2}+2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}$
So $\mathrm{c}=16$
7. Official Ans. by NTA (3)

Sol. $\mathrm{H}_{3} \mathrm{PO}_{3}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
$50 \mathrm{ml} \quad 1 \mathrm{M}$
$1 \mathrm{M} \quad \mathrm{V}=$?
$\Rightarrow \frac{\mathrm{n}_{\mathrm{NaOH}}}{\mathrm{n}_{\mathrm{H}_{3} \mathrm{PO}_{3}}}=\frac{2}{1}$
$\Rightarrow \frac{1 \times \mathrm{V}}{50 \times 1}=\frac{2}{1} \Rightarrow \mathrm{~V}_{\mathrm{NaOH}}=100 \mathrm{ml}$
$\mathrm{H}_{3} \mathrm{PO}_{2}+2 \mathrm{NaOH} \rightarrow \mathrm{NaH}_{2} \mathrm{PO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$100 \mathrm{ml} \quad 1 \mathrm{M}$
$2 \mathrm{M} \quad \mathrm{V}=$?
$\Rightarrow \frac{\mathrm{n}_{\mathrm{NaOH}}}{\mathrm{n}_{\mathrm{H}_{3} \mathrm{PO}}^{3}} \mathrm{C}$
$\Rightarrow \frac{1 \times \mathrm{V}}{2 \times 100}=\frac{1}{1} \Rightarrow \mathrm{~V}_{\mathrm{NaOH}}=200 \mathrm{ml}$
8. Official Ans. by NTA (24)

Sol. $\mathrm{n}_{\mathrm{eq}} \mathrm{Fe}^{2+}=\mathrm{n}_{\mathrm{eq}} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
or, $\left(\frac{15 \times \mathrm{M}_{\mathrm{Fe}^{2+}}}{1000}\right) \times 1=\left(\frac{20 \times 0.03}{1000}\right) \times 6$
$\therefore \quad \mathrm{M}_{\mathrm{Fe}^{2+}}=0.24 \mathrm{M}=24 \times 10^{-2} \mathrm{M}$

9. Official Ans. by NTA (1)

Sol. The oxidation states of Nitrogen in following molecules are as follows
$\mathrm{NO}_{3}^{-} \rightarrow+5$
$\mathrm{NO}_{2} \rightarrow+4$
$\mathrm{NO} \rightarrow+2$
$\mathrm{N}_{2} \mathrm{O} \rightarrow+1$
10. Official Ans. by NTA (18)

Sol. milli-equivalents of $\mathrm{Fe}^{2+}=$ milli-equivalents of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$\mathrm{M} \times 10 \times 1=0.02 \times 15 \times 6$
$\mathrm{M}=0.18=18 \times 10^{-2} \mathrm{M}$
11. Official Ans. by NTA (2)

Sol. $\mathrm{MnO}_{4}^{-}+5 \mathrm{e} \rightarrow \mathrm{Mn}^{+2}$
12. Official Ans. by NTA (1575)

Sol. $\mathrm{n}_{\mathrm{eq}} \mathrm{KMnO}_{4}=\mathrm{n}_{\mathrm{eq}} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
or, $\frac{10 \times 0.05}{1000} \times 5=\frac{10 \times \mathrm{M}}{1000} \times 2$
\therefore Conc. of oxalic acid solution $=0.125 \mathrm{M}$
$=0.125 \times 126 \mathrm{~g} / \mathrm{L}=15.75 \mathrm{~g} / \mathrm{L}$
$=1575 \times 10^{-2} \mathrm{~g} / \mathrm{L}$
13. Official Ans. by NTA (1)

Sol. In $\mathrm{BrO}_{4}^{\ominus}, \mathrm{Br}$ is in highest oxidation state $(+7)$, So it cannot oxidise further hence it cannot show disproportionation reaction.
14. Official Ans. by NTA (316)

Sol. Let molarity of $\mathrm{KMnO}_{4}=\mathrm{x}$
$\mathrm{KMnO}_{4}+\mathrm{FeSO}_{4} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{Mn}^{2+}$
$\mathrm{n}=5 \quad \mathrm{n}=1$
(Equivalents of KMnO_{4} reacted)
$=\left(\right.$ Equivalents of FeSO_{4} reacted $)$
$\Rightarrow(5 \times \mathrm{x} \times 10 \mathrm{ml})=1 \times 0.1 \times 10 \mathrm{ml}$
$\Rightarrow \mathrm{x}=0.02 \mathrm{M}$
Molar mass of $\mathrm{KMnO}_{4}=158 \mathrm{gm} / \mathrm{mol}$
\Rightarrow Strength $=(x \times 158)=3.16 \mathrm{~g} / \ell$
15. Official Ans. by NTA (2)

Sol. According to type of reactions for preparation, colloids have been classified

