MOLE CONCEPT

1. 4.5 g of compound $\mathrm{A}(\mathrm{MW}=90)$ was used to make 250 mL of its aqueous solution. The molarity of the solution in M is $\mathrm{x} \times 10^{-1}$. The value of x is \qquad . (Rounded off to the nearest integer)
2. The number of significant figures in 50000.020×10^{-3} is \qquad .
3. The NaNO_{3} weighed out to make 50 mL of an aqueous solution containing $70.0 \mathrm{mg} \mathrm{Na}{ }^{+}$per mL is \qquad g. (Rounded off to the nearest integer)
[Given : Atomic weight in $\mathrm{g} \mathrm{mol}^{-1}-\mathrm{Na}: 23$; N : 14 ; O : 16]
4. Complete combustion of 750 g of an organic compound provides 420 g of CO_{2} and 210 g of $\mathrm{H}_{2} \mathrm{O}$. The percentage composition of carbon and hydrogen in organic compound is 15.3 and \qquad respectively. (Round off to the Nearest Integer)
5. In Duma's method of estimation of nitrogen, 0.1840 g of an organic compound gave 30 mL of nitrogen collected at 287 K and 758 mm of Hg pressure. The percentage composition of nitrogen in the compound is \qquad . (Round off to the Nearest Integer).
[Given : Aqueous tension at $287 \mathrm{~K}=14 \mathrm{~mm}$ of Hg]
6. The number of chlorine atoms in 20 mL of chlorine gas at STP is \qquad 10^{21}. (Round off to the Nearest Integer).
[Assume chlorine is an ideal gas at STP $\left.\mathrm{R}=0.083 \mathrm{~L}^{\mathrm{bar} \mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}, \mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23}\right]$
7. Complete combustion of 3 g of ethane gives $\mathrm{x} \times 10^{22}$ molecules of water. The value of x is
\qquad . (Round off to the Nearest Integer).
[Use : $\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$; Atomic masses in u : $\mathrm{C}: 12.0 ; \mathrm{O}: 16.0 ; \mathrm{H}: 1.0]$
8. 250 mL of 0.5 M NaOH was added to 500 mL of 1 M HCl . The number of unreacted HCl molecules in the solution after complete reaction is \qquad $\times 10^{21}$. (Nearest integer)
$\left(\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}\right)$
9. 4 g equimolar mixture of NaOH and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ contains x g of NaOH and y g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The value of x is \qquad g. (Nearest integer)
10. When 0.15 g of an organic compound was analyzed using Carius method for estimation of bromine, 0.2397 g of AgBr was obtained. The percentage of bromine in the organic compound is \qquad . (Nearest integer)
[Atomic mass : Silver $=108$, Bromine $=80$]
11. 100 ml of $0.0018 \%(\mathrm{w} / \mathrm{v})$ solution of Cl^{-}ion was the minimum concentration of Cl^{-}required to precipitate a negative sol in one h. The coagulating value of Cl^{-}ion is \qquad (Nearest integer)
12. Methylation of 10 g of benzene gave 9.2 g of toluene. Calculate the percentage yield of toluene \qquad . (Nearest integer)
13. If the concentration of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in blood is $0.72 \mathrm{~g} \mathrm{~L}^{-1}$, the molarity of glucose in blood is \qquad $\times 10^{-3} \mathrm{M}$. (Nearest integer)
[Given : Atomic mass of $\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16 \mathrm{u}$]
14. Consider the complete combustion of butane, the amount of butane utilized to produce 72.0 g of water is \qquad $\times 10^{-1} \mathrm{~g}$.
(in nearest integer)
15. The number of significant figures in 0.00340 is
\qquad _.
16. 0.8 g of an organic compound was analysed by Kjeldahl's method for the estimation of nitrogen. If the percentage of nitrogen in the compound was found to be 42%, then \qquad mL of $1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ would have been neutralized by the ammonia evolved during the analysis.
17. The density of NaOH solution is $1.2 \mathrm{~g} \mathrm{~cm}^{-3}$. The molality of this solution is \qquad m .
(Round off to the Nearest Integer)
[Use : Atomic masses : Na : 23.0 u O : 16.0 u $\mathrm{H}: 1.0$ u Density of $\mathrm{H}_{2} \mathrm{O}: 1.0 \mathrm{~g} \mathrm{~cm}^{-3}$]
18. An organic compound is subjected to chlorination to get compound A using 5.0 g of chlorine. When 0.5 g of compound A is reacted with AgNO_{3} [Carius Method], the percentage of chlorine in compound A is \qquad when it forms 0.3849 g of AgCl . (Round off to the Nearest Integer)
(Atomic masses of Ag and Cl are 107.87 and 35.5 respectively)
19. The ratio of number of water molecules in Mohr's salt and potash alum is \qquad $\times 10^{-1}$.
(Integer answer)
20. 100 g of propane is completely reacted with 1000 g of oxygen. The mole fraction of carbon dioxide in the resulting mixture is $\mathrm{x} \times 10^{-2}$. The value of x is \qquad . (Nearest integer)
[Atomic weight : $\mathrm{H}=1.008 ; \mathrm{C}=12.00$; $\mathrm{O}=16.00$]
21. The number of atoms in 8 g of sodium is $\mathrm{x} \times 10^{23}$. The value of x is \qquad .
(Nearest integer)
[Given: $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
Atomic mass of $\mathrm{Na}=23.0 \mathrm{u}$]
22. Official Ans. by NTA (2)

Sol. $\quad \mathrm{M}=\frac{4.5 / 90}{250 / 1000}=0.2$
$=2 \times 10^{-1}$
2. Official Ans. by NTA (8)

Sol. $\quad \underline{00000.020} \times 10^{-3}$
3. Official Ans by NTA (13)

Sol. Na^{+}present in 50 ml
$=\frac{70 \mathrm{mg}}{1 \mathrm{ml}} \times 50 \mathrm{ml}=3500 \mathrm{mg}=3.5 \mathrm{gm}$
moles of $\mathrm{Na}^{+}=\frac{3.5}{23}=$ moles of NaNO_{3}
weight of $\mathrm{NaNO}_{3}=\frac{3.5}{23} \times 85=12.993 \mathrm{gm}$
5. Official Ans. by NTA (3)

Sol. $44 \mathrm{gm} \mathrm{CO}_{2}$ have 12 gm carbon
So, $420 \mathrm{gm} \mathrm{CO}_{2} \Rightarrow \frac{12}{44} \times 420$
$\Rightarrow \frac{1260}{11}$ gm carbon
$\Rightarrow 114.545$ gram carbon
So, $\%$ of carbon $=\frac{114.545}{750} \times 100$

$$
\simeq 15.3 \%
$$

$18 \mathrm{gm} \mathrm{H}_{2} \mathrm{O} \Rightarrow 2 \mathrm{gm} \mathrm{H}_{2}$
$210 \mathrm{gm} \Rightarrow \frac{2}{18} \times 210$
$=23.33 \mathrm{gm} \mathrm{H}_{2}$
So, $\% \mathrm{H}_{2} \Rightarrow \frac{23.33}{750} \times 100=3.11 \%$

$$
\approx 3 \%
$$

5. Official Ans. by NTA (19)

Sol. In Duma's method of estimation of Nitrogen.
0.1840 gm of organic compound gave 30 mL of nitrogen which is collected at $287 \mathrm{~K} \& 758 \mathrm{~mm}$ of Hg .
Given;
Aqueous tension at $287 \mathrm{~K}=14 \mathrm{~mm}$ of Hg .
Hence actual pressure $=(758-14)$

$$
=744 \mathrm{~mm} \text { of } \mathrm{Hg} .
$$

Volume of nitrogen at $\mathrm{STP}=\frac{273 \times 744 \times 30}{287 \times 760}$
$\mathrm{V}=27.935 \mathrm{~mL}$
$\because 22400 \mathrm{~mL}$ of N_{2} at STP weighs $=28 \mathrm{gm}$.
$\therefore 27.94 \mathrm{~mL}$ of N_{2} at STP weighs
$=\left(\frac{28}{22400} \times 27.94\right) \mathrm{gm}$
$=0.0349 \mathrm{gm}$
Hence $\%$ of Nitrogen $=\left(\frac{0.0349}{0.1840} \times 100\right)$

$$
=18.97 \%
$$

Rond off. Answer = 19\%
6. Official Ans. by NTA (1)

Sol. $\quad \mathrm{PV}=\mathrm{nRT}$
$1.0 \times \frac{20}{1000}=\frac{\mathrm{N}}{6.023 \times 10^{23}} \times 0.083 \times 273$
\therefore Number of Cl_{2} molecules, $\mathrm{N}=5.3 \times 10^{20}$
Hence, Number of Cl-atoms $=1.06 \times 10^{21}$

$$
\approx 1 \times 10^{21}
$$

7. Official Ans. by NTA (18)

Sol. $\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \quad \rightarrow \quad 3 \mathrm{H}_{2} \mathrm{O}$
0.1
mol
$0.3=0.3 \times 6 \times 10^{23}=18 \times 10^{22}$

No. of molecules $=0.3 \times 6.023 \times 10^{23}$
$=18.069 \times 10^{22}$
8. Official Ans. by NTA (226)

Sol. We known that no. of moles $=\mathrm{V}_{\text {litre }} \times$ Molarity
\& No. of millimoles $=\mathrm{V}_{\mathrm{ml}} \times$ Molarity
so millimoles of $\mathrm{NaOH}=250 \times 0.5$

$$
=125
$$

Millimoles of $\mathrm{HCl}=500 \times 1=500$
Now reaction is

	$\mathrm{NaOH}+\mathrm{HCl}$		\rightarrow	$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{t}=0$	125	500	0	0
$\mathrm{t}=\mathrm{t}$	0	375	125	125

so millimoles of HCl left $=375$
Moles of $\mathrm{HCl}=375 \times 10^{-3}$
No. of HCl molecules

$$
\begin{aligned}
& =6.022 \times 10^{23} \times 375 \times 10^{-3} \\
& =225.8 \times 10^{21} \\
& \simeq 226 \times 10^{21}=226
\end{aligned}
$$

9. Official Ans. by NTA (1)

Sol. Total mass $=4 \mathrm{~g}$
Now
$\mathrm{NaOH}:$ a mol $\quad \mathrm{W}_{\mathrm{NaOH}}+\mathrm{W}_{\mathrm{Na}_{2} \mathrm{CO}_{3}}=4$
$\mathrm{Na}_{2} \mathrm{CO}_{3}$: 'a' mol

$$
\Rightarrow 40 \mathrm{a}+106 \mathrm{a}=4
$$

$$
\Rightarrow \mathrm{a}=\frac{4}{146} \mathrm{~mol}
$$

\Rightarrow therefore mass of NaOH is : $\frac{4}{146} \times 40 \mathrm{~g}$

$$
=1.095 \approx 1
$$

10. Official Ans. by NTA (68)

Sol. Moles of $\mathrm{Br}=$ Moles of AgBr obtained
\Rightarrow Mass of $\mathrm{Br}=\frac{0.2397}{188} \times 80 \mathrm{~g}$
therefore $\% \mathrm{Br}$ in the organic compound

$$
\begin{aligned}
& =\frac{W_{\mathrm{Br}}}{\mathrm{~W}_{\mathrm{T}}} \times 100 \\
& =\frac{0.2397 \times 80}{188 \times 0.15} \times 100= \\
& =0.85 \times 80 \\
& =68
\end{aligned}
$$

\Rightarrow Nearest integer is ' 68 '
11. Official Ans. by NTA (1)
12. Official Ans. by NTA (78)
$\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HCl}$
Sol.

$$
\frac{10}{78} \quad\left(\frac{10}{78} \times 92\right) \mathrm{gm} \Rightarrow
$$

$$
\frac{A_{y}}{T_{y}}=\% \text { yield }=\frac{9.2}{920} \times 78 \times 100 \Rightarrow 78 \%
$$

13. Official Ans. by NTA (4)

Sol. $\quad[$ Glu cose $]=\frac{\mathrm{C}(\mathrm{gm} / \ell)}{\mathrm{M}(\mathrm{gm} / \mathrm{mol})}=\frac{0.72}{180}=4 \times 10^{-3} \mathrm{M}$
14. Official Ans. by NTA (464)

Sol. $\mathrm{C}_{4} \mathrm{H}_{10}+\frac{13}{2} \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$
Moles of $\mathrm{H}_{2} \mathrm{O}=\frac{72}{18}=4$
Moles of $\mathrm{C}_{4} \mathrm{H}_{10}$ used $=\frac{1}{5} \times 4$
Weight of $\mathrm{C}_{4} \mathrm{H}_{10}$ used $=\frac{4}{5} \times 58$
$=46.4 \mathrm{gm}$

15 Official Ans. by NTA (3)
Sol. Number of significant figures $=3$
16. Official Ans. by NTA (12)

Sol. Organic compound : 0.8 gm
wt. of $\mathrm{N}=\left(\frac{42}{100} \times 0.8\right) \mathrm{gm}$
mole of $\mathrm{N}=\frac{42 \times 0.8}{100 \times 14}=\frac{2.4}{100} \mathrm{~mol}$
moles of $\mathrm{NH}_{3}=\frac{2.4}{100}$
$2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
$\frac{2.4}{100}$ mole $\quad \frac{1.2}{100}$ mole

$$
\begin{aligned}
& \frac{1.2}{100}=1 \times \mathrm{V}(\ell) \\
& \Rightarrow \mathrm{V}_{\mathrm{H}_{2} \mathrm{SO}_{4}}=\frac{1.2}{100} \ell=12 \mathrm{~m} \ell
\end{aligned}
$$

17. Official Ans. by NTA (5)

Sol. Consider 1ℓ solution
mass of solution $=(1.2 \times 1000) \mathrm{g}$
$=1200 \mathrm{gm}$
Neglecting volume of NaOH
Mass of water $=1000 \mathrm{gm}$
\Rightarrow Mass of $\mathrm{NaOH}=(1200-1000) \mathrm{gm}$
$=200 \mathrm{gm}$
\Rightarrow Moles of $\mathrm{NaOH}=\frac{200 \mathrm{~g}}{50 \mathrm{~g} / \mathrm{mol}}=5 \mathrm{~mol}$

$$
\Rightarrow \text { molality }=\frac{5 \mathrm{~mol}}{1 \mathrm{~kg}}=5 \mathrm{~m}
$$

18. Official Ans. by NTA (19)

Sol. $\mathrm{n}_{\mathrm{c} \ell}$ in compound $=\mathrm{n}_{\mathrm{AgCl}}=\frac{0.3849 \mathrm{~g}}{(107.87+35.5)} \mathrm{g} / \mathrm{mol}$

$$
\begin{aligned}
\Rightarrow \text { mass of chlorine } & =\mathrm{n}_{\mathrm{Cl}} \times 35.5=0.0953 \mathrm{gm} \\
\Rightarrow \% \text { wt of chlorine } & =\frac{0.0953}{0.5} \times 100 \\
& =19.06 \%
\end{aligned}
$$

OR
Sol. Mass of organic compound $=0.5 \mathrm{gm}$.
mass of formed $\mathrm{AgCl}=0.3849 \mathrm{gm}$
$\%$ of $\mathrm{Cl}=\frac{\text { atomic mass of } \mathrm{Cl} \times \text { mass formed } \mathrm{AgCl}}{\text { molecular mass of } \mathrm{AgCl} \times \text { mass of organic compound }} \times 100$
$=\frac{35.5 \times 0.3849}{143.37 \times 0.5} \times 100$
$=19.06$
≈ 19
19. Official Ans. by NTA (5)

Sol. (5) Mohr's salt : $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
The number of water molecules in Mohr's salt $=6$
Potash alum : $\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
The number of water molecules in potash alum $=12$
So ratio of number of water molecules in
Mohr's salt and potash alum $=\frac{6}{12}$

$$
\begin{aligned}
& =\frac{1}{2} \\
& =0.5 \\
& =5 \times 10^{-1}
\end{aligned}
$$

20. Official Ans. by NTA (19)

Sol. $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\ell)}$
$\mathrm{t}=0 \quad 2.27 \mathrm{~mole} \quad 31.25 \mathrm{~mol}$
$\mathrm{t}=\infty \quad 0 \quad 19.9 \mathrm{~mol} \quad 6.81 \mathrm{~mol} \quad 9.08 \mathrm{~mol}$
mole fraction of CO_{2} in the final reaction
mixture (heterogenous)
$\mathrm{X}_{\mathrm{CO}_{2}}=\frac{6.81}{19.9+6.81+9.08}$
$=0.1902=19.02 \times 10^{-2} \quad \Rightarrow 19$
21. Official Ans. by NTA (2)

Sol. No. of atoms $=\frac{8}{23} \times 6.02 \times 10^{23}=2.09 \times 10^{23}$

$$
\begin{gathered}
\simeq 2 \times 10^{23} \\
=\mathrm{x} \times 10^{23} \\
\mathrm{x}=2
\end{gathered}
$$

