ALLEN®

LIQUID SOLUTION

1. When 9.45 g of ClCH₂COOH is added to 500 mL of water, its freezing point drops by 0.5° C. The dissociation constant of ClCH₂COOH is $x \times 10^{-3}$. The value of x is _____. (Rounded off to the nearest integer)

 $\left[K_{f(H_2O)} = 1.86 \, \text{K kg mol}^{-1} \right]$

- 2. C_6H_6 freezes at 5.5°C. The temperature at which a solution 10 g of C_4H_{10} in 200 g of C_6H_6 freeze is ______ °C. (The molal freezing point depression constant of C_6H_6 is 5.12°C/m.)
- 3. 1 molal aqueous solution of an electrolyte A₂B₃ is 60% ionised. The boiling point of the solution at 1 atm is _____ K. (Rounded-off to the nearest integer)

[Given K_b for (H₂O) = 0.52 K kg mol⁻¹]

- 4. If a compound AB dissociates to the extent of 75% in an aqueous solution, the molality of the solution which shows a 2.5 K rise in the boiling point of the solution is _____ molal. (Rounded-off to the nearest integer) $[K_{\rm h} = 0.52 \text{K kg mol}^{-1}]$
- 224 mL of SO_{2(g)} at 298 K and 1 atm is passed through 100 mL of 0.1 M NaOH solution. The non-volatile solute produced is dissolved in 36 g of water. The lowering of vapour pressure of solution (assuming the solution is dilute)

 $(P_{(H_2O)} = 24 \text{ mm of Hg})$ is $x \times 10^{-2} \text{ mm of Hg}$, the value of x is _____. (Integer answer)

6. When 12.2 g of benzoic acid is dissolved in 100 g of water, the freezing point of solution was found to be -0.93 °C (K_f (H_2O) = 1.86K kg mol⁻¹). The number (n) of benzoic acid molecules associated (assuming 100% association) is ____.

AB₂ is 10% dissociated in water to A²⁺ and B⁻. The boiling point of a 10.0 molal aqueous solution of AB₂ is _____oC. (Round off to the Nearest Integer).

[Given : Molal elevation constant of water $K_b = 0.5 \text{ K kg mol}^{-1}$ boiling point of pure water $= 100^{\circ}\text{C}$]

8. At 363 K, the vapour pressure of A is 21 kPa and that of B is 18 kPa. One mole of A and 2 moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is _____ kPa. (Round of to the Nearest Integer).

9. The oxygen dissolved in water exerts a partial pressure of 20 kPa in the vapour above water.

The molar solubility of oxygen in water is $\times 10^{-5}$ mol dm⁻³.

(Round off to the Nearest Integer).

[Given : Henry's law constant

 $= K_{\rm H} = 8.0 \times 10^4 \text{ kPa for O}_2.$

Density of water with dissolved oxygen $= 1.0 \text{ kg dm}^{-3}$

10. A 1 molal $K_4Fe(CN)_6$ solution has a degree of dissociation of 0.4. Its boiling point is equal to that of another solution which contains 18.1 weight percent of a non electrolytic solute A. The molar mass of A is_____ u. (Round off to the Nearest Integer).

[Density of water = 1.0 g cm^{-3}]

11. 2 molal solution of a weak acid HA has a freezing point of 3.885° C. The degree of dissociation of this acid is _____ × 10^{-3}. (Round off to the Nearest Integer).

[Given : Molal depression constant of

water = $1.85 \text{ K kg mol}^{-1}$ Freezing point of pure water = 0° C]

Ε

12. A solute a dimerizes in water. The boiling point of a 2 molar solution of A is 100.52°C. The percentage association of A is.____. (Round off to the Nearest integer) [Use : K_b for water = 0.52 K kg mol⁻¹

Boiling point of water = 100°C]

13. Which one of the following 0.06 M aqueous solutions has lowest freezing point ?

(1) $Al_2(SO_4)_3$ (2) $C_6H_{12}O_6$

(3) KI (4) $K_2 SO_4$

CO₂ gas is bubbled through water during a soft drink manufacturing process at 298 K. If CO₂ exerts a partial pressure of 0.835 bar then x m mol of CO₂ would dissolve in 0.9 L of water. The value of x is _____.

(Nearest integer)

(Henry's law constant for CO_2 at 298 K is 1.67×10^3 bar)

15. When 3.00 g of a substance 'X' is dissolved in 100 g of CCl₄, it raises the boiling point by 0.60 K. The molar mass of the substance 'X' is $______g \text{ mol}^{-1}$. (Nearest integer).

[Given K_b for CCl_4 is 5.0 K kg mol⁻¹]

16. 1.46 g of a biopolymer dissolved in a 100 mL water at 300 K exerted an osmotic pressure of 2.42×10^{-3} bar.

The molar mass of the biopolymer is $_$ $\times 10^4$ g mol⁻¹.

(Round off to the Nearest Integer)

 $[\text{Use} : \text{R} = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}]$

17. When 400 mL of 0.2M H₂SO₄ solution is mixed with 600 mL of 0.1 M NaOH solution, the increase in temperature of the final solution is $\underline{\qquad} \times 10^{-2}$ K. (Round off to the nearest integer).

 $[\text{Use}: \text{H}^+(\text{aq}) + \text{OH}^-(\text{aq}) \rightarrow \text{H}_2\text{O}:$

 $\Delta_{\gamma} H = -57.1 \text{ kJ mol}^{-1}$]

Specific heat of $H_2O = 4.18 \text{ J K}^{-1} \text{ g}^{-1}$

density of $H_2O = 1.0 \text{ g cm}^{-3}$

Assume no change in volume of solution on mixing.

18. Of the following four aqueous solutions, total number of those solutions whose freezing point is lower than that of 0.10 M C₂H₅OH is _____(Integer answer)

ALLEN

(i) 0.10 M Ba₃(PO₄)₂

(ii) 0.10 M Na₂SO₄

(iii) 0.10 M KCl

(iv) 0.10 M Li₃PO₄

19. 83 g of ethylene glycol dissolved in 625 g of water. The freezing point of the solution is _____K. (Nearest integer)

[Use : Molal Freezing point depression constant of water = $1.86 \text{ K kg mol}^{-1}$]

Freezing Point of water = 273 K

Atomic masses : C : 12.0 u, O : 16.0 u, H : 1.0 u]

20. 1 kg of 0.75 molal aqueous solution of sucrose can be cooled up to -4° C before freezing. The amount of ice (in g) that will be separated out is . (Nearest integer)

[Given : $K_f(H_2O) = 1.86 \text{ K kg mol}^{-1}$]

21. 40 g of glucose (Molar mass = 180) is mixed with 200 mL of water. The freezing point of solution is _____ K. (Nearest integer) [Given : $K_f = 1.86$ K kg mol⁻¹ ; Density of water = 1.00 g cm⁻³; Freezing point of water = 273.15 K]

22. Which one of the following 0.10 M aqueous solutions will exhibit the largest freezing point depression ?

(1) hydrazine	(2) glucose
(3) glycine	(4) $\rm KHSO_4$

23. 1.22 g of an organic acid is separately dissolved in 100 g of benzene ($K_b = 2.6 \text{ K kg mol}^{-1}$) and 100 g of acetone ($K_b = 1.7 \text{ K kg mol}^{-1}$). The acid is known to dimerize in benzene but remain as a monomer in acetone. The boiling point of the solution in acetone increases by 0.17°C. The increase in boiling point of solution in benzene in °C is x × 10⁻². The value of x is .(Nearest integer)

[Atomic mass : C = 12.0, H = 1.0, O= 16.0]

node0&\B0BA+BB\Kata\JEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Liq.

Ε

ALLEN[®]

Official Ans. by NTA (36) 1. **Sol.** CICH₂COOH \rightleftharpoons CICH₂COO^{\odot} + H⁺ $i = 1 + (2 - 1) \alpha$ $i = 1 + \alpha$ $\Delta T_{f} = ik_{f}m$ $0.5 = (1 + \alpha)(1.86) \left(\frac{\left(\frac{9.45}{94.5}\right)}{\left(\frac{500}{1000}\right)} \right)$ $\frac{5}{3.72} = 1 + \alpha \implies \alpha = \frac{1.28}{3.72}$ $\alpha = \frac{32}{93}$ $CICH_2COOH \rightleftharpoons CICH_2COO^{\odot} + H^+$ C–Ca Cα Cα $K_a = \frac{(C\alpha)^2}{C - C\alpha} = \frac{C\alpha^2}{1 - \alpha}$ $C = \frac{0.1}{500 / 1000} = 0.2$ $K_a = \frac{0.2(32/93)^2}{(1-32/93)} = \frac{0.2 \times (32)^2}{93 \times 61}$ = 0.036 $K_a = 36 \times 10^{-3}$ Official Ans. by NTA (1) 2. **Sol.** Pure Solvent : $C_6H_6(\ell)$ Given : $T_f^\circ = 5.5^\circ C$ $K_{f} = 5.12 \,^{\circ}C / m$ - 10g : Solute is non dissociative $200 \text{ g } \text{C}_6 \text{H}_6$ $\therefore \Delta T_f = k_f \times m$ $\Rightarrow (T_{\rm f}^0 - T_{\rm f}') = 5.12 \times \frac{\left(\frac{10}{58}\right)}{\left(\frac{200}{1000}\right) \text{kg}} \text{mol}$ $\Rightarrow 5.5 - T_{f} = \frac{5.12 \times 5 \times 10}{58}$ \Rightarrow $T_{\rm f}^{'} = 1.086 \,^{\circ}{\rm C} \simeq 1 \,^{\circ}{\rm C}$

3. Official Ans. by NTA (375) **Sol.** $\Delta T_{h} = iK_{h}m$ $=(1+4\alpha)\times 0.52\times 1$ $= 3.4 \times 0.52 \times 1 = 1.768$ $T_{\rm b} = 1.768 + 373.15 = 374.918 \text{ K}$ = 375 KHence answer is (375) 4. Official Ans. by NTA (3) **Sol.** $\alpha = 0.75, n = 2$ $i = 1 - \alpha + n\alpha = 1 - 0.75 + 2 \times 0.75 = 1.75$ $\Delta T_{h} = ik_{h}m$ or, $2.5 = 1.75 \times 0.52 \times m$ or, m = $\frac{2.5}{1.75 \times 0.52}$ = 2.74 : nearest integer answer will be 3 Official Ans. by NTA (24) 5. Sol.(1)SO₂ + 2NaOH \rightarrow Na₂SO₃ + H₂O 5mmol 224 10mmol 0.0821×298 (L.R.) (i = 3)= 9.2 m mol $P^{s} = P^{0}$. $X_{solvent}$ $=24 \times \frac{2}{(2+15 \times 10^{-3})}$ = 23.82 $= 0.18 \text{ torr} = 18 \times 10^{-2} \text{ torr}.$ ΔP SO_2 + NaOH \rightarrow NaHSO₂ Sol.(2) 9.2 10 - 0.8 92 $\Delta P = P^0 \cdot X_{solute}$ $=24 \times \frac{(1.6+18.4)}{2020}$ $= 0.2376 = 23.76 \times 10^{-2}$

4	Liquid Solution
6.	Official Ans by NTA (2)
Sol.	$\Delta T_{f} = i \times k_{f} \times m$
	$0 - (-0.93) = i \times 1.86 \times \frac{12.2}{122 \times 100} \times 1000$
	$i = \frac{0.93}{1.86} = 0.5$
	$i = 1 + \left(\frac{1}{n} - 1\right) \alpha \qquad \Rightarrow \frac{1}{2} = 1 + \left(\frac{1}{n} - 1\right) \times 1$
	n = 2
7.	Official Ans. by NTA (106)
Sol.	$AB_2 \rightarrow A^{2+} + 2B^-$
t = 0	a 0 0
t = t	$a - a\alpha a\alpha 2a\alpha$
	$n_T = a - a\alpha + a\alpha + 2a\alpha$
	$=a(1+2\alpha)$
	so $i = 1 + 2\alpha$
	Now $\Delta T_b = i \times m \times K_b$
	$\Delta T_{b} = (1 + 2\alpha) \times m \times K_{b}$
	$\alpha = 0.1$ m = 10 K _b = 0.5
	$\Delta T_{b} = 1.2 \times 10 \times 0.5$
	= 6
	So boiling point = 106
8.	Official Ans. by NTA (19)
Sol.	Given $P_A^0 = 21kPa$ \Rightarrow $P_B^0 = 18kPa$
	\rightarrow An Ideal solution is prepared by mixing 1
	mol A and 2 mol B.
	$\rightarrow X_{\rm A} = \frac{1}{3} \text{ and } X_{\rm B} = \frac{2}{3}$
	\rightarrow Acc to Raoult's low
	$\mathbf{P}_{\mathrm{T}} = \mathbf{X}_{\mathrm{A}} \mathbf{P}_{\mathrm{A}}^{0} + \mathbf{X}_{\mathrm{B}} \mathbf{P}_{\mathrm{B}}^{0}$
\Rightarrow	$\mathbf{P}_{\mathrm{T}} = \left(\frac{1}{3} \times 21\right) + \left(\frac{2}{3} \times 18\right)$
\Rightarrow	$P_{T} = 7 + 12 = 19 \text{ KPa}$

9.	Official Ans. by NTA (25)	
	Official Ans. by ALLEN (1389)	
Sol.	$\mathbf{P} = \mathbf{K}_{\mathbf{H}} \cdot \mathbf{x}$	
	or, $20 \times 10^3 = (8 \times 10^4 \times 10^3) \times \frac{n_{O_2}}{n_{O_2} + n_{water}}$	
	or, $\frac{1}{4000} = \frac{n_{O_2}}{n_{O_2} + n_{water}} = \frac{n_{O_2}}{n_{water}}$	
	Means 1 mole water (= 18 gm = 18 ml)	
	dissolves	
	$\frac{1}{4000}$ moles O_2 . Hence, molar solubility	
	$=\frac{\left(\frac{1}{4000}\right)}{18}\times1000=\frac{1}{72}\mathrm{mol}\mathrm{dm}^{-3}$	
	$= 1388.89 \times 10^{-5} \text{ mol dm}^{-3} \approx 1389 \text{ mol dm}^{-3}$	
10.	Official Ans. by NTA (85)	
Sol.	$K_4 \operatorname{Fe(CN)}_6 \rightleftharpoons 4K^+ + \operatorname{Fe(CN)}_6^{4-}$	
	Initial conc. 1 m 0 0	
	Final conc. $(1 - 0.4)m$ 4 × 0.4 0.4m	
	= 0.6 m $= 1.6 m$	
	Effective molality = $0.6 + 1.6 + 0.4 = 2.6m$	
	For same boiling point, the molality of another	
	solution should also be 2.6 m.	
	Now, 18.1 weight percent solution means 18.1	
	gm solute is present in 100 gm solution and	
	hence, $(100 - 18.1 =) 81.9$ gm water.	
	Now, 18.1 weight percent solution means 18.1 gm solute is present in 100 gm solution and hence, $(100 - 18.1 =) 81.9$ gm water. Now, $2.6 = \frac{18.1 / M}{81.9 / 1000}$ \therefore Molar mass of solute, M = 85 Official Ans. by NTA (50) $\Delta T_{f} = (1 + \alpha) K_{f} m$ $\alpha = 0.05 = 50 \times 10^{-3}$	
	\therefore Molar mass of solute, M = 85	
11.	Official Ans. by NTA (50)	
Sol.	$\Delta T_{f} = (1 + \alpha) K_{f} m$	
	$\alpha=0.05=50\times10^{-3}$	
	Ē	

ALLEN®

12. Official Ans. by NTA (100)

Sol.
$$\Delta T_b = T_b - T_b^0$$

 $100.52 - 100$
 $= 0.52^{\circ}C$
 $i = \left(1 - \frac{\alpha}{2}\right)$
 $\therefore \Delta T_b = i K_b \times m$
 $0.52 = \left(1 - \frac{\alpha}{2}\right) \times 0.52 \times 2$
 $\alpha = 1$
So, percentage association =

13. Official Ans. by NTA (1)

100%.

i = 2

i = 3

Sol. $T_f - T'_f = i K_f . m$

For minimum $T_{\rm f}^{'}$

'i' should be maximum.

$$Al_2(SO_4)_3 i = 5$$

$$C_6H_{12}O_6 i=1$$

$$K_2SO_4$$

- 14. Official Ans. by NTA (25)
- Sol. From Henry's law

 $P_{gas} = K_{\rm H}.X_{gas}$

$$0.835 = 1.67 \times 10^3 \times \frac{n(CO_2)}{\frac{0.9 \times 1000}{18}}$$

 $n(CO_2) = 0.025$

Millimoles of $CO_2 = 0.025 \times 1000 = 25$

15. Official Ans. by NTA (250)

Sol. $\Delta T_b = K_b \times molality$

 $0.60 = 5 \times \left(\frac{3/M}{100/100}\right)$ M = 250

16. Official Ans. by NTA (15)
Sol.
$$\pi = CRT$$
; $\pi = \text{osmotic pressure}$
 $C = \text{molarity}$
 $T = \text{Temperature of solution}$
let the molar mass be M gm / mol
 2.42×10^{-3} bar
 $= \frac{\left(\frac{1.46g}{\text{Mgm} / \text{mol}}\right)}{0.1\ell} \times \left(\frac{0.083\ell - \text{bar}}{\text{mol} - \text{K}}\right) \times (300\text{K})$
 $\Rightarrow \text{ M} = 15.02 \times 10^4 \text{ g/mol}$
17. Official Ans. by NTA (2)
ALLEN Ans. (82)
Sol. $n_{\text{H}^+} = \frac{400 \times 0.2}{1000} \times 2 = 0.16$
 $n_{\text{OH}^-} = \frac{600 \times 0.1}{1000} = 0.06 \text{ (L.R)}$
Now, heat liberated from reaction
 $= \text{heat gained by solutions}$
or, $0.06 \times 57.1 \times 10^3$
 $= (1000 \times 1.0) \times 4.18 \times \Delta \text{T}$

- $\therefore \Delta T = 0.8196 \text{ K}$
- $= 81.96 \times 10^{-2} \text{ K} \approx 82 \times 10^{-2} \text{ K}$

18. Official Ans. by NTA (4)

Sol. As 0.1 M C_2H_5OH is non-dissociative and rest all salt given are electrolyte so in each case effective molarity > 0.1 so each will have lower freezing point.

19. Official Ans. by NTA (269)

Sol. $k_f = 1.86 \text{ k. kg/mol}$ $T_f^{\circ} = 273 \text{ k}$ solvent : H₂O(625 g) Solute : 83 g $\begin{pmatrix} CH_2 - CH_2 \\ | & | \\ OH & OH \end{pmatrix} \Rightarrow$ Non dissociative

solute

$$\Rightarrow \Delta T_{f} = k_{f} \times m \Rightarrow (T_{f}^{o} - T_{f}^{1}) = 1.86 \times \frac{83/62}{624/1000} \Rightarrow 273 - T_{f}^{1} = \frac{1.86 \times 83 \times 1000}{62 \times 625} = \frac{154380}{38750} \Rightarrow 273 - T_{f}^{1} = 4 \Rightarrow T_{f}^{1} = 259 \text{ K}$$

Е

node06\808A-88\Kota\LEE MAIN\Jee Main-2021_Subject Topic PDF With Solution\Chemistry\Eng\Liquid Solution

20. Official Ans. by NTA (518)

Sol. Let mass of water initially present = x gm

$$\Rightarrow$$
 Mass of sucrose = (1000 - x) gm

$$\Rightarrow$$
 moles of sucrose = $\left(\frac{1000 - x}{342}\right)$

$$\Rightarrow 0.75 = \frac{\left(\frac{1000 - x}{342}\right)}{\left(\frac{x}{1000}\right)} \Rightarrow \frac{x}{1000} = \frac{1000 - x}{342 \times 0.75}$$

$$\Rightarrow 256.5 \text{ x} = 10^6 - 1000 \text{ x}$$

$$\Rightarrow$$
 x = 795.86 gm

 \Rightarrow moles of sucrose = 0.5969

New mass of $H_2O = a kg$

$$\Rightarrow 4 = \frac{0.5969}{a} \times 1.86 \Rightarrow a = 0.2775 \text{ kg}$$

 \Rightarrow ice separated = (795.86 - 277.5) = 518.3 gm

21. Official Ans. by NTA (271)

Sol. molality =
$$\frac{\left(\frac{40}{180}\right) \text{mol}}{0.2 \text{Kg}} = \left(\frac{10}{9}\right) \text{molal}$$

 $\Rightarrow \Delta T_f = T_f - T_f' = 1.86 \times \frac{10}{9}$
 $\Rightarrow T_f' = 273.15 - 1.86 \times \frac{10}{9}$

= 271.08 K

 $\simeq 271$ K (nearest-integer)

22. Official Ans. by NTA (4)

Sol. \therefore Van't Hoff factor is highest for KHSO₄

 \therefore colligative property (ΔT_f) will be highest for $KHSO_4$

23. Official Ans. by NTA (13)

Sol. With benzene as solvent

$$\Delta T_{b} = i K_{b} m$$

$$\Delta T_{b} = \frac{1}{2} \times 2.6 \times \frac{1.22 / M_{w}}{100 / 1000} \qquad \dots (1)$$

With Acetone as solvent

$$\Delta T_{b} = i K_{b} m$$

$$0.17 = 1 \times 1.7 \times \frac{1.22 / M_{w}}{100 / 1000} \qquad \dots (2)$$

(1)/(2)
$$\frac{\Delta T_{b}}{0.17} = \frac{\frac{1}{2} \times 2.6 + \frac{1.22/M_{w}}{100/1000}}{1 \times 1.7 \times \frac{1.22/M_{w}}{100/1000}}$$

$$\Delta T_{b} = \frac{0.26}{2}$$
$$\Delta T_{b} = 13 \times 10^{-2}$$
$$\Rightarrow x = 13$$