LIQUID SOLUTION

1. When 9.45 g of $\mathrm{ClCH}_{2} \mathrm{COOH}$ is added to 500 mL of water, its freezing point drops by $0.5^{\circ} \mathrm{C}$. The dissociation constant of $\mathrm{ClCH}_{2} \mathrm{COOH}$ is $x \times 10^{-3}$. The value of x is \qquad .
(Rounded off to the nearest integer)
$\left[\mathrm{K}_{\mathrm{f}\left(\mathrm{H}_{2} \mathrm{O}\right)}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$
2. $\quad \mathrm{C}_{6} \mathrm{H}_{6}$ freezes at $5.5^{\circ} \mathrm{C}$. The temperature at which a solution 10 g of $\mathrm{C}_{4} \mathrm{H}_{10}$ in 200 g of $\mathrm{C}_{6} \mathrm{H}_{6}$ freeze is \qquad ${ }^{\circ} \mathrm{C}$. (The molal freezing point depression constant of $\mathrm{C}_{6} \mathrm{H}_{6}$ is $5.12^{\circ} \mathrm{C} / \mathrm{m}$.)
3. 1 molal aqueous solution of an electrolyte $A_{2} B_{3}$ is 60% ionised. The boiling point of the solution at 1 atm is \qquad K. (Rounded-off to the nearest integer)
[Given K_{b} for $\left(\mathrm{H}_{2} \mathrm{O}\right)=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
4. If a compound AB dissociates to the extent of 75% in an aqueous solution, the molality of the solution which shows a 2.5 K rise in the boiling point of the solution is \qquad molal. (Rounded-off to the nearest integer)
$\left[\mathrm{K}_{\mathrm{b}}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right]$
5. $\quad 224 \mathrm{~mL}$ of $\mathrm{SO}_{2(\mathrm{~g})}$ at 298 K and 1 atm is passed through 100 mL of 0.1 M NaOH solution. The non-volatile solute produced is dissolved in 36 g of water. The lowering of vapour pressure of solution (assuming the solution is dilute)
$\left(\mathrm{P}_{\left(\mathrm{H}_{2} \mathrm{O}\right)}=24 \mathrm{~mm}\right.$ of Hg$)$ is $x \times 10^{-2} \mathrm{~mm}$ of Hg , the value of x is \qquad . (Integer answer)
6. When 12.2 g of benzoic acid is dissolved in 100 g of water, the freezing point of solution was found to be $-0.93^{\circ} \mathrm{C}\left(\mathrm{K}_{f}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$. The number (n) of benzoic acid molecules associated (assuming 100\% association) is \qquad -.
7. AB_{2} is 10% dissociated in water to A^{2+} and B^{-}. The boiling point of a 10.0 molal aqueous solution of AB_{2} is \qquad ${ }^{\circ} \mathrm{C}$. (Round off to the Nearest Integer).
[Given : Molal elevation constant of water $\mathrm{K}_{\mathrm{b}}=0.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ boiling point of pure water $\left.=100^{\circ} \mathrm{C}\right]$
8. At 363 K , the vapour pressure of A is 21 kPa and that of B is 18 kPa . One mole of A and 2 moles of B are mixed. Assuming that this solution is ideal, the vapour pressure of the mixture is \qquad kPa . (Round of to the Nearest Integer).
9. The oxygen dissolved in water exerts a partial pressure of 20 kPa in the vapour above water. The molar solubility of oxygen in water is
\qquad $\times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$.
(Round off to the Nearest Integer).
[Given : Henry's law constant

$$
=\mathrm{K}_{\mathrm{H}}=8.0 \times 10^{4} \mathrm{kPa} \text { for } \mathrm{O}_{2}
$$

Density of water with dissolved oxygen $=1.0 \mathrm{~kg} \mathrm{dm}^{-3}$]
10. A 1 molal $\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}$ solution has a degree of dissociation of 0.4 . Its boiling point is equal to that of another solution which contains 18.1 weight percent of a non electrolytic solute
A. The molar mass of A is \qquad u. (Round off to the Nearest Integer).
[Density of water $=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$]
11. 2 molal solution of a weak acid HA has a freezing point of $3.885^{\circ} \mathrm{C}$. The degree of dissociation of this acid is \qquad $\times 10^{-3}$. (Round off to the Nearest Integer).
[Given : Molal depression constant of water $=1.85 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ Freezing point of pure water $\left.=0^{\circ} \mathrm{C}\right]$
12. A solute a dimerizes in water. The boiling point of a 2 molar solution of A is $100.52^{\circ} \mathrm{C}$. The percentage association of A is. \qquad -.
(Round off to the Nearest integer)
[Use : K_{b} for water $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
Boiling point of water $\left.=100^{\circ} \mathrm{C}\right]$
13. Which one of the following 0.06 M aqueous solutions has lowest freezing point?
(1) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(2) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(3) KI
(4) $\mathrm{K}_{2} \mathrm{SO}_{4}$
14. CO_{2} gas is bubbled through water during a soft drink manufacturing process at 298 K . If CO_{2} exerts a partial pressure of 0.835 bar then x m mol of CO_{2} would dissolve in 0.9 L of water. The value of x is \qquad .
(Nearest integer)
(Henry's law constant for CO_{2} at 298 K is 1.67×10^{3} bar)
15. When 3.00 g of a substance ' X ' is dissolved in 100 g of CCl_{4}, it raises the boiling point by 0.60 K . The molar mass of the substance ' X ' is
\qquad $\mathrm{g} \mathrm{mol}^{-1}$. (Nearest integer).
[Given K_{b} for CCl_{4} is $5.0 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
16. $\quad 1.46 \mathrm{~g}$ of a biopolymer dissolved in a 100 mL water at 300 K exerted an osmotic pressure of 2.42×10^{-3} bar.

The molar mass of the biopolymer is
$\times 10^{4} \mathrm{~g} \mathrm{~mol}^{-1}$.
(Round off to the Nearest Integer)
[Use : $\mathrm{R}=0.083 \mathrm{~L}^{2}$ bar $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$]
17. When 400 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with 600 mL of 0.1 M NaOH solution, the increase in temperature of the final solution is
\qquad $\times 10^{-2} \mathrm{~K}$. (Round off to the nearest integer).
[Use : $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$:

$$
\left.\Delta_{\gamma} \mathrm{H}=-57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}\right]
$$

Specific heat of $\mathrm{H}_{2} \mathrm{O}=4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$
density of $\mathrm{H}_{2} \mathrm{O}=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$
Assume no change in volume of solution on mixing.
18. Of the following four aqueous solutions, total number of those solutions whose freezing point is lower than that of $0.10 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is
\qquad (Integer answer)
(i) $0.10 \mathrm{M} \mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(ii) $0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(iii) 0.10 M KCl
(iv) $0.10 \mathrm{M} \mathrm{Li}_{3} \mathrm{PO}_{4}$
19. 83 g of ethylene glycol dissolved in 625 g of water. The freezing point of the solution is
\qquad K. (Nearest integer)
[Use : Molal Freezing point depression constant of water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]

Freezing Point of water $=273 \mathrm{~K}$
Atomic masses : C : $12.0 \mathrm{u}, \mathrm{O}: 16.0 \mathrm{u}, \mathrm{H}: 1.0 \mathrm{u}]$
20. 1 kg of 0.75 molal aqueous solution of sucrose can be cooled up to $-4^{\circ} \mathrm{C}$ before freezing. The amount of ice (in g) that will be separated out is
\qquad . (Nearest integer)
[Given : $\mathrm{K}_{\mathrm{f}}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
21. 40 g of glucose (Molar mass $=180$) is mixed with 200 mL of water. The freezing point of solution is \qquad K. (Nearest integer)
[Given : $\mathrm{K}_{\mathrm{f}}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$; Density of water $=1.00 \mathrm{~g} \mathrm{~cm}^{-3}$; Freezing point of water $=273.15 \mathrm{~K}]$
22. Which one of the following 0.10 M aqueous solutions will exhibit the largest freezing point depression?
(1) hydrazine
(2) glucose
(3) glycine
(4) KHSO_{4}
23. 1.22 g of an organic acid is separately dissolved in 100 g of benzene $\left(\mathrm{K}_{\mathrm{b}}=2.6 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$ and 100 g of acetone $\left(\mathrm{K}_{\mathrm{b}}=1.7 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$. The acid is known to dimerize in benzene but remain as a monomer in acetone. The boiling point of the solution in acetone increases by $0.17^{\circ} \mathrm{C}$. The increase in boiling point of solution in benzene in ${ }^{\circ} \mathrm{C}$ is $\mathrm{x} \times 10^{-2}$. The value of x is
\qquad .(Nearest integer)
[Atomic mass : $\mathrm{C}=12.0, \mathrm{H}=1.0, \mathrm{O}=16.0$]

SOLUTION

1. Official Ans. by NTA (36)

Sol. $\mathrm{ClCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COO}^{\ominus}+\mathrm{H}^{+}$

$$
\begin{aligned}
& \mathrm{i}=1+(2-1) \alpha \\
& \mathrm{i}=1+\alpha \\
& \Delta \mathrm{T}_{\mathrm{f}}= \mathrm{ik}_{\mathrm{f}} \mathrm{~m} \\
& 0.5=(1+\alpha)(1.86)\left(\frac{\left(\frac{9.45}{94.5}\right)}{\left(\frac{500}{1000}\right)}\right) \\
& \frac{5}{3.72}=1+\alpha \Rightarrow \alpha=\frac{1.28}{3.72} \\
& \alpha=\frac{32}{93} \\
& \mathrm{ClCH}_{2} \mathrm{COOH} \rightleftharpoons \mathrm{ClCH}_{2} \mathrm{COO}^{\ominus}+\mathrm{H}^{+} \\
& \mathrm{C}-\mathrm{C} \alpha \\
& \mathrm{~K}_{\mathrm{a}}=\frac{(\mathrm{C} \alpha)^{2}}{\mathrm{C}-\mathrm{C} \alpha}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha} \quad \mathrm{C} \alpha \\
& \mathrm{~K}_{\mathrm{a}}=\frac{0.2(32 / 93)^{2}}{(1-32 / 93)}=\frac{0.2 \times(32)^{2}}{93 \times 61} \\
&=0.036 \\
& \mathrm{~K}_{\mathrm{a}}=36 \times 10^{-3}
\end{aligned}
$$

2. Official Ans. by NTA (1)

Sol. Pure Solvent : $\mathrm{C}_{6} \mathrm{H}_{6}(\ell)$
Given : $\mathrm{T}_{\mathrm{f}}^{\circ}=5.5^{\circ} \mathrm{C}$
$\mathrm{K}_{\mathrm{f}}=5.12^{\circ} \mathrm{C} / \mathrm{m}$

$\because \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$\Rightarrow\left(\mathrm{T}_{\mathrm{f}}^{0}-\mathrm{T}_{\mathrm{f}}^{\prime}\right)=5.12 \times \frac{\left(\frac{10}{58}\right)}{\left(\frac{200}{1000}\right) \mathrm{kg}} \mathrm{mol}$
$\Rightarrow 5.5-\mathrm{T}_{\mathrm{f}}^{\prime}=\frac{5.12 \times 5 \times 10}{58}$
$\Rightarrow \mathrm{T}_{\mathrm{f}}^{\prime}=1.086^{\circ} \mathrm{C} \simeq 1^{\circ} \mathrm{C}$
3. Official Ans. by NTA (375)

Sol. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{iK} \mathrm{m}$

$$
\begin{gathered}
=(1+4 \alpha) \times 0.52 \times 1 \\
=3.4 \times 0.52 \times 1=1.768 \\
\mathrm{~T}_{\mathrm{b}}=1.768+373.15=374.918 \mathrm{~K} \\
=375 \mathrm{~K}
\end{gathered}
$$

Hence answer is (375)
4. Official Ans. by NTA (3)

Sol. $\alpha=0.75, \mathrm{n}=2$
$\mathrm{i}=1-\alpha+\mathrm{n} \alpha=1-0.75+2 \times 0.75=1.75$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{ik}_{\mathrm{b}} \mathrm{m}$
or, $2.5=1.75 \times 0.52 \times \mathrm{m}$
or, $\mathrm{m}=\frac{2.5}{1.75 \times 0.52}=2.74$
\therefore nearest integer answer will be 3
5. Official Ans. by NTA (24)

Sol.(1) $\mathrm{SO}_{2}+2 \mathrm{NaOH} \rightarrow \quad \mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\frac{224}{0.0821 \times 298}{ }^{10 \mathrm{mmol}}\left(\begin{array}{l}5 \mathrm{~L} . \text { R. })\end{array} \quad(\mathrm{i}=3)\right.$
$=9.2 \mathrm{~m} \mathrm{~mol}$

$$
\begin{aligned}
\mathrm{P}^{s} & =\mathrm{P}^{0} \cdot \mathrm{X}_{\text {solvent }} \\
& =24 \times \frac{2}{\left(2+15 \times 10^{-3}\right)} \\
& =23.82
\end{aligned}
$$

$$
\Delta \mathrm{P} \quad=0.18 \text { torr }=18 \times 10^{-2} \text { torr. }
$$

Sol.(2) $\mathrm{SO}_{2}+\mathrm{NaOH} \rightarrow \mathrm{NaHSO}_{3}$

$$
\begin{array}{lcc}
9.2 & 10 & - \\
- & 0.8 & 9.2 \\
\Delta \mathrm{P} & =\mathrm{P}^{0} \cdot \mathrm{X}_{\text {solute }} \\
& =24 \times \frac{(1.6+18.4)}{2020} \\
& =0.2376=23.76 \times 10^{-2}
\end{array}
$$

6. Official Ans by NTA (2)

Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$0-(-0.93)=\mathrm{i} \times 1.86 \times \frac{12.2}{122 \times 100} \times 1000$
$\mathrm{i}=\frac{0.93}{1.86}=0.5$
$\mathrm{i}=1+\left(\frac{1}{\mathrm{n}}-1\right) \alpha \quad \Rightarrow \frac{1}{2}=1+\left(\frac{1}{\mathrm{n}}-1\right) \times 1$
$\mathrm{n}=2$
7. Official Ans. by NTA (106)

Sol. $\mathrm{AB}_{2} \rightarrow \mathrm{~A}^{2+}+2 \mathrm{~B}^{-}$
$\mathrm{t}=0 \quad \mathrm{a} \quad 0 \quad 0$
$\mathrm{t}=\mathrm{t} \quad \mathrm{a}-\mathrm{a} \alpha \mathrm{a} \alpha \quad 2 \mathrm{a} \alpha$
$\mathrm{n}_{\mathrm{T}}=\mathrm{a}-\mathrm{a} \alpha+\mathrm{a} \alpha+2 \mathrm{a} \alpha$

$$
=a(1+2 \alpha)
$$

so $i=1+2 \alpha$
Now $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{m} \times \mathrm{K}_{\mathrm{b}}$
$\Delta \mathrm{T}_{\mathrm{b}}=(1+2 \alpha) \times \mathrm{m} \times \mathrm{K}_{\mathrm{b}}$
$\alpha=0.1 \quad \mathrm{~m}=10 \quad \mathrm{~K}_{\mathrm{b}}=0.5$
$\Delta \mathrm{T}_{\mathrm{b}}=1.2 \times 10 \times 0.5$

$$
=6
$$

So boiling point $=106$

8. Official Ans. by NTA (19)

Sol. Given $\mathrm{P}_{\mathrm{A}}^{0}=21 \mathrm{kPa} \quad \Rightarrow \mathrm{P}_{\mathrm{B}}^{0}=18 \mathrm{kPa}$
\rightarrow An Ideal solution is prepared by mixing 1 mol A and 2 mol B .
$\rightarrow \mathrm{X}_{\mathrm{A}}=\frac{1}{3}$ and $\mathrm{X}_{\mathrm{B}}=\frac{2}{3}$
\rightarrow Acc to Raoult's low
$\mathrm{P}_{\mathrm{T}}=\mathrm{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{0}+\mathrm{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{0}$
$\Rightarrow \quad \mathrm{P}_{\mathrm{T}}=\left(\frac{1}{3} \times 21\right)+\left(\frac{2}{3} \times 18\right)$
$\Rightarrow \quad \mathrm{P}_{\mathrm{T}}=7+12=19 \mathrm{KPa}$
9. Official Ans. by NTA (25)

Official Ans. by ALLEN (1389)
Sol. $\quad \mathrm{P}=\mathrm{K}_{\mathrm{H}} \cdot \mathrm{x}$
or, $20 \times 10^{3}=\left(8 \times 10^{4} \times 10^{3}\right) \times \frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\mathrm{O}_{2}}+\mathrm{n}_{\text {water }}}$
or, $\frac{1}{4000}=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\mathrm{O}_{2}}+\mathrm{n}_{\text {water }}}=\frac{\mathrm{n}_{\mathrm{O}_{2}}}{\mathrm{n}_{\text {water }}}$
Means 1 mole water $(=18 \mathrm{gm}=18 \mathrm{ml})$ dissolves
$\frac{1}{4000}$ moles O_{2}. Hence, molar solubility
$=\frac{\left(\frac{1}{4000}\right)}{18} \times 1000=\frac{1}{72} \mathrm{moldm}^{-3}$
$=1388.89 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \approx 1389 \mathrm{~mol} \mathrm{dm}^{-3}$
10. Official Ans. by NTA (85)

Sol.

$$
\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6} \rightleftharpoons 4 \mathrm{~K}^{+}+\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4}
$$

Initial conc. $1 \mathrm{~m} \quad 0 \quad 0$
Final conc. $(1-0.4) \mathrm{m} 4 \times 0.4 \quad 0.4 \mathrm{~m}$

$$
=0.6 \mathrm{~m} \quad=1.6 \mathrm{~m}
$$

Effective molality $=0.6+1.6+0.4=2.6 \mathrm{~m}$
For same boiling point, the molality of another solution should also be 2.6 m .

Now, 18.1 weight percent solution means 18.1 gm solute is present in 100 gm solution and hence, $(100-18.1=) 81.9 \mathrm{gm}$ water.

Now, $2.6=\frac{18.1 / \mathrm{M}}{81.9 / 1000}$
\therefore Molar mass of solute, $\mathrm{M}=85$
11. Official Ans. by NTA (50)

Sol. $\Delta \mathrm{T}_{\mathrm{f}}=(1+\alpha) \mathrm{K}_{\mathrm{f}} \mathrm{m}$
$\alpha=0.05=50 \times 10^{-3}$

12. Official Ans. by NTA (100)

Sol. $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}{ }^{0}$
100.52-100
$=0.52^{\circ} \mathrm{C}$
$\mathrm{i}=\left(1-\frac{\alpha}{2}\right)$
$\because \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K} \times \mathrm{m}$
$0.52=\left(1-\frac{\alpha}{2}\right) \times 0.52 \times 2$
$\alpha=1$
So, percentage association $=100 \%$.
13. Official Ans. by NTA (1)

Sol. $T_{f}-T_{f}^{\prime}=i K_{f} \cdot m$
For minimum $\mathrm{T}_{\mathrm{f}}^{\prime}$
'i' should be maximum.

$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	$\mathrm{i}=5$
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	$\mathrm{i}=1$

KI $\quad i=2$
$\mathrm{K}_{2} \mathrm{SO}_{4} \quad \mathrm{i}=3$
14. Official Ans. by NTA (25)

Sol. From Henry's law
$\mathrm{P}_{\mathrm{gas}}=\mathrm{K}_{\mathrm{H}} \cdot \mathrm{X}_{\text {gas }}$
$0.835=1.67 \times 10^{3} \times \frac{\mathrm{n}\left(\mathrm{CO}_{2}\right)}{\frac{0.9 \times 1000}{18}}$
$\mathrm{n}\left(\mathrm{CO}_{2}\right)=0.025$
Millimoles of $\mathrm{CO}_{2}=0.025 \times 1000=25$
15. Official Ans. by NTA (250)

Sol. $\quad \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \times$ molality
$0.60=5 \times\left(\frac{3 / \mathrm{M}}{100 / 100}\right)$

$$
\mathrm{M}=250
$$

16. Official Ans. by NTA (15)

Sol. $\pi=$ CRT ; $\pi=$ osmotic pressure

$$
\begin{aligned}
& \mathrm{C}=\text { molarity } \\
& \mathrm{T}=\text { Temperature of solution }
\end{aligned}
$$

let the molar mass be $\mathrm{M} \mathrm{gm} / \mathrm{mol}$

$$
2.42 \times 10^{-3} \mathrm{bar}
$$

$$
=\frac{\left(\frac{1.46 \mathrm{~g}}{\mathrm{Mgm} / \mathrm{mol}}\right)}{0.1 \ell} \times\left(\frac{0.083 \ell-\mathrm{bar}}{\mathrm{~mol}-\mathrm{K}}\right) \times(300 \mathrm{~K})
$$

$\Rightarrow \mathrm{M}=15.02 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
17. Official Ans. by NTA (2)

ALLEN Ans. (82)
Sol. $\quad \mathrm{n}_{\mathrm{H}^{+}}=\frac{400 \times 0.2}{1000} \times 2=0.16$
$\mathrm{n}_{\text {OH }}=\frac{600 \times 0.1}{1000}=0.06$ (L.R)
Now, heat liberated from reaction
$=$ heat gained by solutions
or, $0.06 \times 57.1 \times 10^{3}$
$=(1000 \times 1.0) \times 4.18 \times \Delta \mathrm{T}$
$\therefore \Delta \mathrm{T}=0.8196 \mathrm{~K}$
$=81.96 \times 10^{-2} \mathrm{~K} \approx 82 \times 10^{-2} \mathrm{~K}$
18. Official Ans. by NTA (4)

Sol. As $0.1 \mathrm{M} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is non-dissociative and rest all salt given are electrolyte so in each case effective molarity >0.1 so each will have lower freezing point.
19. Official Ans. by NTA (269)

Sol. $\mathrm{k}_{\mathrm{f}}=1.86 \mathrm{k} . \mathrm{kg} / \mathrm{mol}$
$\mathrm{T}_{\mathrm{f}}{ }^{0}=273 \mathrm{k}$
solvent: $\mathrm{H}_{2} \mathrm{O}(625 \mathrm{~g})$
Solute : $83 \mathrm{~g}\left(\begin{array}{cc}\mathrm{CH}_{2}-\mathrm{CH}_{2} \\ \mid & \mid \\ \mathrm{OH} & \mathrm{OH}\end{array}\right) \Rightarrow$ Non dissociative
solute
$\Rightarrow \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}$
$\Rightarrow\left(\mathrm{T}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{T}_{\mathrm{f}}^{1}\right)=1.86 \times \frac{83 / 62}{624 / 1000}$
$\Rightarrow 273-\mathrm{T}_{\mathrm{f}}^{1}=\frac{1.86 \times 83 \times 1000}{62 \times 625}=\frac{154380}{38750}$
$\Rightarrow 273-\mathrm{T}_{\mathrm{f}}^{\mathrm{l}}=4$
$\Rightarrow \mathrm{T}_{\mathrm{f}}^{1}=259 \mathrm{~K}$

20. Official Ans. by NTA (518)

Sol. Let mass of water initially present $=\mathrm{x}$ gm
\Rightarrow Mass of sucrose $=(1000-\mathrm{x}) \mathrm{gm}$
\Rightarrow moles of sucrose $=\left(\frac{1000-\mathrm{x}}{342}\right)$
$\Rightarrow 0.75=\frac{\left(\frac{1000-\mathrm{x}}{342}\right)}{\left(\frac{\mathrm{x}}{1000}\right)} \Rightarrow \frac{\mathrm{x}}{1000}=\frac{1000-\mathrm{x}}{342 \times 0.75}$
$\Rightarrow 256.5 \mathrm{x}=10^{6}-1000 \mathrm{x}$
$\Rightarrow \mathrm{x}=795.86 \mathrm{gm}$
\Rightarrow moles of sucrose $=0.5969$
New mass of $\mathrm{H}_{2} \mathrm{O}=\mathrm{akg}$
$\Rightarrow 4=\frac{0.5969}{\mathrm{a}} \times 1.86 \Rightarrow \mathrm{a}=0.2775 \mathrm{~kg}$
\Rightarrow ice separated $=(795.86-277.5)=518.3 \mathrm{gm}$
21. Official Ans. by NTA (271)

Sol. molality $=\frac{\left(\frac{40}{180}\right) \mathrm{mol}}{0.2 \mathrm{Kg}}=\left(\frac{10}{9}\right) \mathrm{molal}$
$\Rightarrow \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{f}}{ }^{\prime}=1.86 \times \frac{10}{9}$
$\Rightarrow \mathrm{T}_{\mathrm{f}}{ }^{\prime}=273.15-1.86 \times \frac{10}{9}$
$=271.08 \mathrm{~K}$
$\simeq 271 \mathrm{~K}$ (nearest-integer)
22. Official Ans. by NTA (4)

Sol. \because Van't Hoff factor is highest for KHSO_{4}
\therefore colligative property $\left(\Delta \mathrm{T}_{\mathrm{f}}\right)$ will be highest for KHSO_{4}
23. Official Ans. by NTA (13)

Sol. With benzene as solvent

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{~K}_{\mathrm{b}} \mathrm{~m}
$$

$$
\begin{equation*}
\Delta \mathrm{T}_{\mathrm{b}}=\frac{1}{2} \times 2.6 \times \frac{1.22 / \mathrm{M}_{\mathrm{w}}}{100 / 1000} \tag{1}
\end{equation*}
$$

With Acetone as solvent
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \mathrm{K}_{\mathrm{b}} \mathrm{m}$
$0.17=1 \times 1.7 \times \frac{1.22 / \mathrm{M}_{\mathrm{w}}}{100 / 1000}$
(1) / (2)
$\frac{\Delta \mathrm{T}_{\mathrm{b}}}{0.17}=\frac{\frac{1}{2} \times 2.6+\frac{1.22 / \mathrm{M}_{\mathrm{w}}}{100 / 1000}}{1 \times 1.7 \times \frac{1.22 / \mathrm{M}_{\mathrm{w}}}{100 / 1000}}$
$\Delta \mathrm{T}_{\mathrm{b}}=\frac{0.26}{2}$
$\Delta \mathrm{T}_{\mathrm{b}}=13 \times 10^{-2}$
$\Rightarrow \mathrm{x}=13$

