IONIC EQUILIBRIUM

1. The solubility product of PbI_{2} is 8.0×10^{-9}. The solubility of lead iodide in 0.1 molar solution of lead nitrate is $\mathrm{x} \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. The value of x is
\qquad . (Rounded off to the nearest integer)
[Given : $\sqrt{2}=1.41$]
2. The solubility of AgCN in a buffer solution of $\mathrm{pH}=3$ is x . The value of x is:
[Assume : No cyano complex is formed; $\mathrm{K}_{\mathrm{sp}}(\mathrm{AgCN})$
$=2.2 \times 10^{-16}$ and $\left.\mathrm{K}_{\mathrm{a}}(\mathrm{HCN})=6.2 \times 10^{-10}\right]$
(1) 0.625×10^{-6}
(2) 1.9×10^{-5}
(3) 2.2×10^{-16}
(4) 1.6×10^{-6}
3. 0.4 g mixture of $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{CO}_{3}$ and some inert impurities was first titrated with $\frac{\mathrm{N}}{10} \mathrm{HCl}$ using phenolphthalein as an indicator, 17.5 mL of HCl was required at the end point. After this methyl orange was added and titrated. 1.5 mL of same HCl was required for the next end point. The weight percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the mixture is
\qquad . (Rounded-off to the nearest integer)
4. The solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water is :
[Given : The solubility product of $\mathrm{Ca}(\mathrm{OH})_{2}$ in water $\left.=5.5 \times 10^{-6}\right]$
(1) 1.77×10^{-6}
(2) 1.11×10^{-6}
(3) 1.11×10^{-2}
(4) 1.77×10^{-2}
5. Consider titration of NaOH solution versus 1.25 M oxalic acid solution. At the end point following burette readings were obtained.
(i) 4.5 mL
(ii) 4.5 mL
(iii) 4.4 mL
(iv) 4.4 mL
(v) 4.4 mL

If the volume of oxalic acid taken was 10.0 mL then the molarity of the NaOH solution is
\qquad M. (Rounded-off to the nearest integer)
6. The pH of ammonium phosphate solution, if pK_{a} of phosphoric acid and pk_{b} of ammonium hydroxide are 5.23 and 4.75 respectively, is
\qquad .
7. Two salts $A_{2} X$ and $M X$ have the same value of solubility product of 4.0×10^{-12}. The ratio of their molar solubilities i.e. $\frac{\mathrm{S}\left(\mathrm{A}_{2} \mathrm{X}\right)}{\mathrm{S}(\mathrm{MX})}=$ \qquad .
(Round off to the Nearest Integer).
8. Sulphurous acid $\left(\mathrm{H}_{2} \mathrm{SO}_{3}\right)$ has $\mathrm{Ka}_{1}=1.7 \times 10^{-2}$ and $\mathrm{Ka}_{2}=6.4 \times 10^{-8}$. The pH of 0.588 M $\mathrm{H}_{2} \mathrm{SO}_{3}$ is \qquad (Round off to the Nearest Integer)
9. 0.01 moles of a weak acid $\mathrm{HA}\left(\mathrm{K}_{\mathrm{a}}=2.0 \times 10^{-6}\right)$ is dissolved in 1.0 L of 0.1 M HCl solution. The degree of dissociation of HA is
\qquad $\times 10^{-5}$ (Round off to the Nearest Integer).
[Neglect volume change on adding HA. Assume degree of dissociation $\ll 1$]
10. In order to prepare a buffer solution of pH 5.74 , sodium acetate is added to acetic acid. If the concentration of acetic acid in the buffer is 1.0 M , the concentration of sodium acetate in the buffer is \qquad M. (Round off to the Nearest Integer).
[Given : $\mathrm{pKa}($ acetic acid $)=4.74]$
11. The solubility of CdSO_{4} in water is $8.0 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$. Its solubility in 0.01 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution is \qquad $\times 10^{-6} \mathrm{~mol} \mathrm{~L}{ }^{-1}$. (Round off to the Nearest integer) (Assume that solubility is much less than 0.01 M)
12. 10.0 ml of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is titrated against 0.2 M HCl solution. The following titre values were obtained in 5 readings.
$4.8 \mathrm{ml}, 4.9 \mathrm{ml}, 5.0 \mathrm{ml}, 5.0 \mathrm{ml}$ and 5.0 ml
Based on these readings, and convention of titrimetric estimation of concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is \qquad mM .
(Round off to the Nearest integer)
13. A solution is 0.1 M in Cl^{-}and 0.001 M in CrO_{4}^{2-}. Solid AgNO_{3} is gradually added to it Assuming that the addition does not change in volume and $\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=1.7 \times 10^{-10} \mathrm{M}^{2}$ and $\mathrm{K}_{\text {sp }}\left(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\right)=1.9 \times 10^{-12} \mathrm{M}^{3}$.
Select correct statement from the following :
(1) AgCl precipitates first because its K_{sp} is high.
(2) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ precipitates first as its $\mathrm{K}_{\text {sp }}$ is low.
(3) $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ precipitates first because the amount of Ag^{+}needed is low.
(4) AgCl will precipitate first as the amount of Ag^{+}needed to precipitate is low.
14. The water having more dissolved O_{2} is :
(1) boiling water
(2) water at $80^{\circ} \mathrm{C}$
(3) polluted water
(4) water at $4^{\circ} \mathrm{C}$
15. Assuming that $\mathrm{Ba}(\mathrm{OH})_{2}$ is completely ionised in aqueous solution under the given conditions the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in 0.005 M aqueous solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ at 298 K is \qquad $\times 10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}$.
(Nearest integer)
16. Given below are two statements.

Statement I: In the titration between strong acid and weak base methyl orange is suitable as an indicator.

Statement II: For titration of acetic acid with NaOH phenolphthalein is not a suitable indicator.

In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I is false but Statement II is true
(2) Statement I is true but Statement II is false
(3) Both Statement I and Statement II are true
(4) Both Statement I and Statement II are false
17. The OH^{-}concentration in a mixture of 5.0 mL of $0.0504 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ and 2 mL of $0.0210 \mathrm{M} \mathrm{NH}_{3}$ solution is $x \times 10^{-6} M$. The value of x is
\qquad . (Nearest integer)
[Given $\mathrm{K}_{\mathrm{w}}=1 \times 10^{-14}$ and $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$]
18. The overall stability constant of the complex ion $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is 2.1×10^{13}. The overall dissociations constant is $\mathrm{y} \times 10^{-14}$. Then y is
\qquad .(Nearest integer)
19. The number of moles of NH_{3}, that must be added to 2 L of $0.80 \mathrm{M} \mathrm{AgNO}_{3}$ in order to reduce the concentration of Ag^{+}ions to $5.0 \times$ $10^{-8} \mathrm{M}\left(\mathrm{K}_{\text {formation }}\right.$ for $\left.\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=1.0 \times 10^{8}\right)$ is
\qquad (Nearest integer)
[Assume no volume change on adding NH_{3}]
20. $A_{3} B_{2}$ is a sparingly soluble salt of molar mass $\mathrm{M}\left(\mathrm{g} \mathrm{mol}{ }^{-1}\right)$ and solubility $\mathrm{x} \mathrm{g} \mathrm{L}^{-1}$. The solubility product satisfies $\mathrm{K}_{\mathrm{sp}}=a\left(\frac{\mathrm{x}}{\mathrm{M}}\right)^{5}$. The value of a is \qquad (Integer answer)
21. The pH of a solution obtained by mixing 50 mL of 1 M HCl and 30 mL of 1 M NaOH is $x \times 10^{-4}$. The value of x is \qquad .
(Nearest integer) $[\log 2.5=0.3979]$
22. The molar solubility of $\mathrm{Zn}(\mathrm{OH})_{2}$ in 0.1 M NaOH solution is $\mathrm{x} \times 10^{-18} \mathrm{M}$. The value of x is
\qquad (Nearest integer)
(Given : The solubility product of $\mathrm{Zn}(\mathrm{OH})_{2}$ is 2×10^{-20})

SOLUTION

1. Official Ans. by NTA (141)

Sol. Given : $\left[\mathrm{K}_{\mathrm{sp}}\right]_{\mathrm{Pb}_{2}}=8 \times 10^{-9}$
To calculate : solubility of PbI_{2} in 0.1 M sol of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(I) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{~Pb}_{(a \mathrm{q})}^{+2}+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$
0.1 M
$0.1 \mathrm{M} \quad 0.2 \mathrm{M}$
(II) $\mathrm{PbI}_{2}(\mathrm{~s})=\mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})$

$$
\begin{aligned}
& \quad \mathrm{s} \\
&= \mathrm{s}+0.1 \\
&= 0.1
\end{aligned}
$$

$$
2 \mathrm{~s}
$$

Now : $\mathrm{K}_{\mathrm{sp}}=8 \times 10^{-9}=\left[\mathrm{Pb}^{+2}\right]\left[\mathrm{I}^{-}\right]^{2}$
$\Rightarrow 8 \times 10^{-9}=0.1 \times(2 \mathrm{~s})^{2}$
$\Rightarrow 8 \times 10^{-8}=4 \mathrm{~s}^{2} \Rightarrow \mathrm{~s}=\sqrt{2} \times 10^{-4}$
$\Rightarrow \mathrm{S}=141 \times 10^{-6} \mathrm{M}$
$\Rightarrow \mathrm{x}=141$
2. Official Ans. by NTA (2)

Sol. $\frac{\mathrm{K}_{\text {sp }}}{\mathrm{Ka}}=\frac{\mathrm{s}^{2}}{\left(\mathrm{H}^{+}\right)} ; \quad \mathrm{s}=\sqrt{\frac{\mathrm{K}_{\text {sp }}}{\mathrm{K}_{\mathrm{a}}}\left(\mathrm{H}^{+}\right)}$

$$
\mathrm{s}=\sqrt{\frac{2.2 \times 10^{-16}}{6.2 \times 10^{-10}} \times 10^{-3}}
$$

$\mathrm{s}=1.9 \times 10^{-5}$
Hence answer is (2)
3. Official Ans. by NTA (4)

Sol. Upto first end point
gm equi. of $\left(\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3}\right)=\mathrm{HCl}$
$\mathrm{x}+\mathrm{y} \times 1=\frac{1}{10} \times 17.5$
$x+y=1.75$
Upto second end point
$\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \equiv \mathrm{HCl}$
$x+y \times 2=\frac{1}{10} \times 19$
$x+2 y=1.9$
$y=0.15$
$\% \mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.15 \times 10^{-3} \times 106}{0.4} \times 100$
= 3.975%
$=4 \%$
Hence answer is (4)
4. Official Ans. by NTA (3)

Sol. $\mathrm{Ca}(\mathrm{OH})_{2} \rightleftharpoons \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$
s $\quad 2 \mathrm{~s}$
$\mathrm{k}_{\mathrm{sp}}=\mathrm{s}(2 \mathrm{~s})^{2} \Rightarrow 5.5 \times 10^{-6}=4 \mathrm{~S}^{3}$
$\Rightarrow \mathrm{s}=\left(\frac{5.5}{4}\right)^{\frac{1}{3}} \times 10^{-2}=1.11 \times 10^{-2}$
5. Official Ans. by NTA (6)

Sol. $\quad \mathrm{V}_{\mathrm{NaOH}}=4.4 \mathrm{ml}$
eq. of $\mathrm{NaOH}=$ eq. of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
or, $\mathrm{M} \times 4.4 \times 1=1.25 \times 10 \times 2$
or, $\mathrm{M}=5.68 \mathrm{M}$
\therefore Nearest integer answer is 6
6. Official Ans by NTA (7)

Sol. Since $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ is salt of weak acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ \& weak base $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$.
$\mathrm{pH}=7+\frac{1}{2}(\mathrm{pka}-\mathrm{pkb})$
$=7+\frac{1}{2}(5.23-4.75)$
$=7.24 \approx 7$.
7. Official Ans. by NTA (50)

Sol. For $\mathrm{A}_{2} \mathrm{X}$
$\mathrm{A}_{2} \mathrm{X} \rightarrow 2 \mathrm{~A}^{+}+\mathrm{X}^{2-}$
$2 S_{1} \quad S_{1}$
$\mathrm{K}_{\mathrm{sp}}=4 \mathrm{~S}_{1}^{3}=4 \times 10^{-12}$
$S_{1}=10^{-4}$
for MX
$\mathrm{MX} \rightarrow \mathrm{M}^{+}+\mathrm{X}^{-}$
$\mathrm{S}_{2} \quad \mathrm{~S}_{2}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}_{2}^{2}=4 \times 10^{-12}$
$\mathrm{S}_{2}=2 \times 10^{-6}$
so $\frac{\mathrm{S}_{\mathrm{A}_{2} \mathrm{X}}}{\mathrm{S}_{\mathrm{MX}}}=\frac{10^{-4}}{2 \times 10^{-6}}=50$
8. Official Ans. by NTA (1)

Sol. $\mathrm{H}_{2} \mathrm{SO}_{3}$ [Dibasic acid]
$\mathrm{c}=0.588 \mathrm{M}$
$\Rightarrow \quad \mathrm{pH}$ of solution \Rightarrow due to First dissociation only since $K_{a}, \gg \mathrm{Ka}_{2}$
$\Rightarrow \quad$ First dissociation of $\mathrm{H}_{2} \mathrm{SO}_{3}$

$$
\mathrm{H}_{2} \mathrm{SO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{\oplus}(\mathrm{aq})+\mathrm{HSO}_{3}^{-}(\mathrm{aq}): \mathrm{ka}_{1}=1.7 \times 10^{-2}
$$

$$
\mathrm{t}=0 \quad \mathrm{C}
$$

$t \quad C-x \quad x \quad x$
$\Rightarrow \quad \mathrm{Ka}_{1}=\frac{1.7}{100}=\frac{\left[\mathrm{H}^{\oplus}\right]\left[\mathrm{HSO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{SO}_{3}\right]}$
$\Rightarrow \frac{1.7}{100}=\frac{x^{2}}{(0.58-x)}$
$\Rightarrow \quad 1.7 \times 0.588-1.7 \mathrm{x}=100 \mathrm{x}^{2}$
$\Rightarrow \quad 100 \mathrm{x}^{2}+1.7 \mathrm{x}-1=0$
$\Rightarrow \quad\left[\mathrm{H}^{\oplus}\right]=\mathrm{x}=\frac{-1.7+\sqrt{(1.7)^{2}+4 \times 100 \times 1}}{2 \times 100}=0.09186$
Therefore pH of sol. is : $\mathrm{pH}=-\log \left[\mathrm{H}^{\oplus}\right]$
$\Rightarrow \quad \mathrm{pH}=-\log (0.09186)=1.036 \simeq 1$
9. Official Ans. by NTA (2)

Sol.

$$
\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}
$$

Initial conc. $0.01 \mathrm{M} \quad 0.1 \mathrm{M} \quad 0$
Equ. conc. $(0.01-\mathrm{x})(0.1+\mathrm{x}) \mathrm{xM}$

$$
\approx 0.01 \mathrm{M} \quad \approx 0.1 \mathrm{M}
$$

Now, $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{x}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \Rightarrow 2 \times 10^{-6}=\frac{0.1 \times \mathrm{x}}{0.01}$
$\therefore \mathrm{x}=2 \times 10^{-7}$
Now, $\alpha=\frac{\mathrm{x}}{0.01}=\frac{2 \times 10^{-7}}{0.01}=2 \times 10^{-5}$
10. Official Ans. by NTA (10)

Sol. $\mathrm{pH}=\mathrm{pKa}+\log \frac{[\mathrm{CB}]}{[\mathrm{WA}]}$
$5.74=4.74+\log \frac{[\mathrm{CB}]}{1}$
$\Rightarrow[C B]=10 \mathrm{M}$
11. Official Ans. by NTA (64)

Sol. In pure water,
$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}^{2}=\left(8 \times 10^{-4}\right)^{2}$
$=64 \times 10^{-8}$
In $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$
$\mathrm{H}_{2} \mathrm{SO}_{4(\text { (aq) }} \rightarrow 2 \mathrm{H}_{(\text {(aq) }}^{+}+\mathrm{SO}_{4}{ }^{2-}$ (aq.)
$0.02 \quad 0.01$
$\mathrm{BaSO}_{4(\mathrm{~s})} \rightleftharpoons \mathrm{Ba}^{2+}{ }_{(\text {aq. })}+\mathrm{SO}_{4}^{2-}{ }_{(\text {aq })}$
$\mathrm{x} \quad \mathrm{x} \quad(\mathrm{x}+0.01)$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{x}(\mathrm{x}+0.01)$
$=64 \times 10^{-8}$
$\mathrm{x}+0.01 \cong 0.01 \mathrm{M}$
So, $x(0.01)=64 \times 10^{-8}$
$\mathrm{x}=64 \times 10^{-6} \mathrm{M}$
12. Official Ans. by NTA (50)

Sol. Most precise volume of $\mathrm{HCl}=5 \mathrm{ml}$ at equivalence point

Meq. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ meq. of HCl .
Let molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
solution $=\mathrm{M}$, then
$\mathrm{M} \times 10 \times 2=0.2 \times 5 \times 1$
$\mathrm{M}=0.05 \mathrm{~mol} / \mathrm{L}$
$=0.05 \times 1000$
$=50 \mathrm{mM}$
13. Official Ans. by NTA (4)

Sol. (i) $\left[\mathrm{Ag}^{+}\right]$required to ppt $\mathrm{AgCl}(\mathrm{s})$
$\mathrm{Ksp}=\mathrm{IP}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]=1.7 \times 10^{-10}$
$\left[\mathrm{Ag}^{+}\right]=1.7 \times 10^{-9}$
(ii) $\left[\mathrm{Ag}^{+}\right]$required to $\mathrm{ppt} \mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$
$\mathrm{Ksp}=\mathrm{IP}=[\mathrm{Ag}+]^{2}\left[\mathrm{CrO}_{4}^{-2}\right]=1.9 \times 10^{-12}$
$\left[\mathrm{Ag}^{+}\right]=4.3 \times 10^{-5}$
$\left[\mathrm{Ag}^{+}\right]$required to ppt AgCl is low so AgCl will ppt $1^{\text {t }}$.
14. Official Ans. by NTA (4)

Sol. On heating concentration of O_{2} in water decreases. So boiling water and water at $80^{\circ} \mathrm{C}$ having less O_{2} concentration. Polluted water also having less O_{2} concentration. So water at $4^{\circ} \mathrm{C}$ having maximum O_{2} concentration.
15. Official Ans. by NTA (1)

Sol. $\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{Ba}^{+2}+2 \mathrm{OH}^{-}$

$$
2 \times 0.005=0.01=10^{-2}
$$

At 298 K : in aq. solution $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{10^{-14}}{10^{-2}}=10^{-12}
$$

16. Official Ans. by NTA (2)

Sol. Titration curve for strong acid and weak base initially a buffer of weak base and conjugate acid is :

Formed, thus pH falls slowly and after equivalence point, so the pH falls sharply so methyl arrange, having pH range of 3.2 to 4.4 will weak as indicator. So statement-I is correct.

Titration curve for weak acid and strong base (NaOH)

Initially weak acid will form a buffer so pH increases slowly but after equivalence point. it rises sharply covering range of phenolphthalein so it will be suitable indicator so statement-II is false.
17. Official Ans. by NTA (3)

Sol. $\left[\mathrm{NH}_{4}^{+}\right]=0.0504 \&\left[\mathrm{NH}_{3}\right]=0.0210$
So $\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{HO}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}$
$\left[\mathrm{HO}^{-}\right]=\frac{\mathrm{K}_{\mathrm{b}} \times\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=1.8 \times 10^{-5} \times \frac{2}{5} \times \frac{210}{504}$

$$
=3 \times 10^{-6}
$$

18. Official Ans. by NTA (5)

Sol. Given $\mathrm{k}_{\mathrm{f}}=2.1 \times 10^{13}$
$\mathrm{K}_{\mathrm{d}}=\frac{1}{\mathrm{k}_{\mathrm{f}}}=4.7 \times 10^{-14}$
$\therefore \mathrm{y}=4.7 \approx 5$
19. Official Ans. by NTA (4)

Sol. Let moles added $=\mathrm{a}$

$$
\begin{aligned}
& \mathrm{Ag}_{\text {(aq.) }}^{+}+2 \mathrm{NH}_{3(\text { (aq. })} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2 \text { (aq.) }}^{+} \\
& \mathrm{t}=0 \quad 0.8 \quad\left(\frac{\mathrm{a}}{2}\right) \\
& \mathrm{t}=\infty \quad 5 \times 10^{-8} \quad\left(\frac{\mathrm{a}}{2}-1.6\right) \quad 0.8 \\
& \frac{0.8}{\left(5 \times 10^{-8}\right)\left(\frac{\mathrm{a}}{2}-1.6\right)^{2}}=10^{8} \\
& \Rightarrow \frac{\mathrm{a}}{2}-1.6=0.4 \Rightarrow \mathrm{a}=4
\end{aligned}
$$

20. Official Ans. by NTA (108)

Sol. $\quad \mathrm{A}_{3} \mathrm{~B}_{2}(\mathrm{~s}) \rightleftharpoons 3 \mathrm{~A}_{(a))}^{+2}+2 \mathrm{~B}_{(a)}^{-3}$

$$
3 \mathrm{~s} \quad 2 \mathrm{~s}
$$

$\mathrm{K}_{\mathrm{SP}}=(3 \mathrm{~s})^{3}(2 \mathrm{~s})^{2}$
$\mathrm{K}_{\mathrm{SP}}=108 \mathrm{~S}^{5} \& \mathrm{~s}=(\mathrm{X} / \mathrm{M})$
$\mathrm{K}_{\mathrm{SP}}=108\left(\frac{\mathrm{x}}{\mathrm{m}}\right)^{5}$
given $K_{S P}=a\left(\frac{x}{m}\right)^{5}$
comparing $\mathrm{a}=108$
21. Official Ans. by NTA (6021)

Sol. $\quad \mathrm{HCl}$ (aq.) $+\mathrm{NaOH}($ aq. $) \rightarrow \mathrm{NaCl}($ aq. $)+\mathrm{H}_{2} \mathrm{O}(\ell)$

$50 \mathrm{ml}, 1 \mathrm{M}$	$30 \mathrm{ml}, 1 \mathrm{M}$	
$\mathrm{t}=0$	50 mm	30 mm
$\mathrm{t}=\infty$	20 mm	

$[\mathrm{HCl}]=\frac{20}{80}=\frac{1}{4} \mathrm{M}=2.5 \times 10^{-1} \mathrm{M}$
$\mathrm{pH}=-\log 2.15 \times 10^{-1}=1-0.3979=0.6021$
$\mathrm{pH}=6021 \times 10^{-4}$
22. Official Ans. by NTA (2)

Sol. $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Zn}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

$$
\mathrm{S} \quad(0.1+2 \mathrm{~s}) \simeq 0.1
$$

$\mathrm{K}_{\mathrm{sp}}=\mathrm{S}(0.1)^{2}$
$2 \times 10^{-20}=\mathrm{s} \times 10^{-2} \Rightarrow \mathrm{~s}=2 \times 10^{-18}$

$$
=\mathrm{x} \times 10^{-18}
$$

$x=2$

