ELECTROCHEMISTRY

1. The electrode potential of $\mathrm{M}^{2+} / \mathrm{M}$ of 3 d -series elements shows positive value of :
(1) Zn
(2) Fe
(3) Co
(4) Cu
2. The magnitude of the change in oxidising power of the $\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}$ couple is $\mathrm{x} \times 10^{-4} \mathrm{~V}$, if the H^{+}concentration is decreased from 1 M to $10^{-4} \mathrm{M}$ at $25^{\circ} \mathrm{C}$. (Assume concentration of MnO_{4}^{-}and Mn^{2+} to be same on change in H^{+} concentration). The value of x is \qquad .
(Rounded off to the nearest integer)
$\left[\right.$ Given : $\left.\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059\right]$
3. Copper reduces NO_{3}^{-}into NO and NO_{2} depending upon the concentration of HNO_{3} in solution. (Assuming fixed $\left[\mathrm{Cu}^{2+}\right]$ and $\mathrm{P}_{\mathrm{NO}}=\mathrm{P}_{\mathrm{NO}_{2}}$), the HNO_{3} concentration at which the thermodynamic tendency for reduction of NO_{3}^{-}into NO and NO_{2} by copper is same is $10^{x} \mathrm{M}$. The value of 2 x is \qquad .
(Rounded-off to the nearest integer)
[Given, $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\mathrm{o}}=0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}}^{0}=0.96 \mathrm{~V}$, $\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}^{0}=0.79 \mathrm{~V}$ and at 298 K ,
$\left.\frac{\mathrm{RT}}{\mathrm{F}}(2.303)=0.059\right]$
4. Consider the following reaction
$\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}, \mathrm{E}^{\mathrm{o}}=1.51 \mathrm{~V}$.
The quantity of electricity required in Faraday to reduce five moles of MnO_{4}^{-}is \qquad .
5 Emf of the following cell at 298 K in V is $x \times 10^{-2} . \mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.1 \mathrm{M}) \| \mathrm{Ag}^{+}(0.01 \mathrm{M})\right| \mathrm{Ag}$ The value of x is \qquad . (Rounded off to the nearest integer)
[Given : $\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}=-0.76 \mathrm{~V} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}^{0}}^{0}=+0.80 \mathrm{~V} ; \frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059$]
5. A $5.0 \mathrm{~m} \mathrm{~mol} \mathrm{dm}^{-3}$ aqueous solution of KCl has a conductance of 0.55 mS when measured in a cell constant $1.3 \mathrm{~cm}^{-1}$. The molar conductivity of this solution is \qquad $\mathrm{mSm}^{2} \mathrm{~mol}^{-1}$.
(Round off to the Nearest Integer)
6. A KCl solution of conductivity $0.14 \mathrm{~S} \mathrm{~m}^{-1}$ shows a resistance of 4.19Ω in a conductivity cell. If the same cell is filled with an HCl solution, the resistance drops to 1.03Ω. The conductivity of the HCl solution is $\ldots \times 10^{-2} \mathrm{~S} \mathrm{~m}^{-1}$. (Round off to the Nearest Integer).
7. For the reaction
$2 \mathrm{Fe}^{3+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{~s})$
the magnitude of the standard molar free energy change, $\Delta_{\mathrm{r}} \mathrm{G}_{\mathrm{m}}^{\circ}=-$ \qquad kJ (Round off to the Nearest Integer).

$$
\left[\begin{array}{l}
\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}(\mathrm{~s})}^{\mathrm{o}}=-0.440 \mathrm{~V} ; \mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}(\mathrm{~s})}^{\mathrm{o}}=-0.036 \mathrm{~V} \\
\mathrm{E}_{\mathrm{I}_{2} / 2 \mathrm{I}^{-}}^{\mathrm{o}}=0.539 \mathrm{~V} ; \quad \mathrm{F}=96500 \mathrm{C}
\end{array}\right]
$$

9. The molar conductivities at infinite dilution of barium chloride, sulphuric acid and hydrochloric acid are 280, 860 and $426 \mathrm{Scm}^{2}$ mol^{-1} respectively. The molar conductivity at infinite dilution of barium sulphate is \qquad $\ldots \quad \mathrm{S} \mathrm{cm}{ }^{2} \mathrm{~mol}^{-1}$ (Round off to the Nearest Integer).
10. Potassium chlorate is prepared by electrolysis of KCl in basic solution as shown by following equation.
$6 \mathrm{OH}^{-}+\mathrm{Cl}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}$
A current of $x A$ has to be passed for 10 h to produce 10.0 g of potassium chlorate. the value of x is \qquad . (Nearest integer)
(Molar mass of $\mathrm{KClO}_{3}=122.6 \mathrm{~g} \mathrm{~mol}^{-1}$,
$\mathrm{F}=96500 \mathrm{C}$)
11. Assume a cell with the following reaction
$\mathrm{Cu}_{(\mathrm{s})}+2 \mathrm{Ag}^{+}\left(1 \times 10^{-3} \mathrm{M}\right) \rightarrow \mathrm{Cu}^{2+}(0.250 \mathrm{M})+2 \mathrm{Ag}_{(\mathrm{s})}$
$\mathrm{E}_{\text {cell }}^{\ominus}=2.97 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}$ for the above reaction is \qquad V.
(Nearest integer)
[Given : $\log 2.5=0.3979, \mathrm{~T}=298 \mathrm{~K}$]
12. Consider the cell at $25^{\circ} \mathrm{C}$
$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(\mathrm{aq}),(1 \mathrm{M}) \| \mathrm{Fe}^{3+}(\mathrm{aq}), \mathrm{Fe}^{2+}(\mathrm{aq})\right| \mathrm{Pt}(\mathrm{s})$
The fraction of total iron present as Fe^{3+} ion at the cell potential of 1.500 V is $\mathrm{x} \times 10^{-2}$. The value of x is \qquad .
(Nearest integer)
$\left(\right.$ Given : $\left.\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=0.77 \mathrm{~V}, \mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}=-0.76 \mathrm{~V}\right)$
13. The conductivity of a weak acid HA of concentration $0.001 \mathrm{~mol} \mathrm{~L}^{-1}$ is $2.0 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$.

If $\Lambda_{\mathrm{m}}^{\mathrm{o}}(\mathrm{HA})=190 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, the ionization constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ of HA is equal to \qquad \times 10^{-6}.
(Round off to the Nearest Integer)
14. For the cell
$\mathrm{Cu}(\mathrm{s}) \mid \mathrm{Cu}^{2+}(\mathrm{aq})(0.1 \mathrm{M}) \| \mathrm{Ag}^{+}(\mathrm{aq})(0.01 \mathrm{M})$ $\operatorname{Ag}(s)$
the cell potential $\mathrm{E}_{1}=0.3095 \mathrm{~V}$
For the cell
$\mathrm{Cu}(\mathrm{s})\left|\mathrm{Cu}^{2+}(\mathrm{aq})(0.01 \mathrm{M}) \| \mathrm{Ag}^{+}(\mathrm{aq})(0.001 \mathrm{M})\right|$ $\mathrm{Ag}(\mathrm{s})$
the cell potential $=$ \qquad $\times 10^{-2} \mathrm{~V}$. (Round off the Nearest Integer).
[Use : $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059$]
15. Given below are two statements :

Statement I : The limiting molar conductivity of KCl (strong electrolyte) is higher compared to that of $\mathrm{CH}_{3} \mathrm{COOH}$ (weak electrolyte).

Statement II : Molar conductivity decreases with decrease in concentration of electrolyte.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement I is true but Statement II is false.
(2) Statement I is false but Statement II is true.
(3) Both Statement I and Statement II are true.
(4) Both Statement I and Statement II are false.
16. For the galvanic cell,
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(0.02 \mathrm{M}) \rightarrow \mathrm{Zn}^{2+}(0.04 \mathrm{M})+\mathrm{Cu}(\mathrm{s})$,
$\mathrm{E}_{\text {cell }}=$ \qquad $\times 10^{-2} \mathrm{~V}$. (Nearest integer)
[Use : $\mathrm{E}_{\mathrm{Cu} / \mathrm{Cu}^{2+}}^{0}=-0.34 \mathrm{~V}, \mathrm{E}_{\mathrm{Zn} / \mathrm{Zn}{ }^{2+}}^{0}=+0.76 \mathrm{~V}$,

$$
\left.\frac{2.303 \mathrm{RT}}{\mathrm{~F}}=0.059 \mathrm{~V}\right]
$$

17. The resistance of a conductivity cell with cell constant $1.14 \mathrm{~cm}^{-1}$, containing 0.001 M KCl at 298 K is 1500Ω. The molar conductivity of 0.001 M KCl solution at 298 K in $\mathrm{S} \mathrm{cm}{ }^{2}$ mol^{-1} is \qquad . (Integer answer)
18. Consider the following cell reaction :
$\mathrm{Cd}_{(\mathrm{s})}+\mathrm{Hg}_{2} \mathrm{SO}_{4(\mathrm{~s})}+\frac{9}{5} \mathrm{H}_{2} \mathrm{O}_{(l)} \rightleftharpoons \mathrm{CdSO}_{4} \cdot \frac{9}{5} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})}+2 \mathrm{Hg}_{(l)}$ The value of $\mathrm{E}_{\text {cell }}^{0}$ is 4.315 V at $25^{\circ} \mathrm{C}$. If $\Delta \mathrm{H}^{\circ}=-825.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the standard entropy change $\Delta \mathrm{S}^{\circ}$ in $\mathrm{J} \mathrm{K}^{-1}$ is \qquad . (Nearest integer)
[Given : Faraday constant $=96487 \mathrm{C} \mathrm{mol}^{-1}$]
19. Match List-I with List-II

List-I

(Parameter)
(a) Cell constant
(b) Molar conductivity
(c) Conductivity
(d) Degree of dissociation

List-II

(Unit)
(i) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$
(ii) Dimensionless
(iii) m^{-1}
(iv) $\Omega^{-1} \mathrm{~m}^{-1}$ of electrolyte

Choose the most appropriate answer from the options given below :
(1) (a)-(iii), (b)-(i), (c)-(iv), (d)-(ii)
(2) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
(3) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
(4) (a)-(ii), (b)-(i), (c)-(iii), (d)-(iv)
20. If the conductivity of mercury at $0^{\circ} \mathrm{C}$ is $1.07 \times 10^{6} \mathrm{~S} \mathrm{~m}^{-1}$ and the resistance of a cell containing mercury is 0.243Ω, then the cell constant of the cell is $x \times 10^{4} \mathrm{~m}^{-1}$. The value of x is \qquad .(Nearest integer)

SOLUTION

1. Official Ans. by NTA (4)

Sol. Only copper shows positive value for electrode potential of $\mathrm{M}^{2+} / \mathrm{M}$ of 3d-series elements.
$\mathrm{E}^{\ominus} / \mathrm{V}_{\left(\mathrm{Cu}^{2}+\mathrm{Cu}\right)}:+0.34$
2. Official Ans. by NTA (3776)

Sol. Eqn is-
$\mathrm{MnO}_{4}^{-}+\mathrm{H}^{\oplus}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{+2}+4 \mathrm{H}_{2} \mathrm{O}$
Nernst equation:
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {Cell }}^{0}-\frac{0.059}{5} \log \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}\left[\frac{1}{\mathrm{H}^{+}}\right]^{8}$
(I) Given $\left[\mathrm{H}^{\oplus}\right]=1 \mathrm{M}$

$$
\mathrm{E}_{1}=\mathrm{E}^{0}-\frac{0.059}{5} \log \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]}
$$

(II) Now : $\left[\mathrm{H}^{\oplus}\right]=10^{-4} \mathrm{M}$

$$
\begin{aligned}
& \mathrm{E}_{2}=\mathrm{E}^{0}-\frac{0.059}{5} \log \frac{\left[\mathrm{Mn}^{+2}\right]}{\left[\mathrm{MnO}_{4}^{-}\right]} \times \frac{1}{\left(10^{-4}\right)^{8}} \\
& =\mathrm{E}^{0}-\frac{0.059}{5} \log \frac{\mathrm{Mn}^{+2}}{\left[\mathrm{MnO}_{4}^{-}\right]}+\frac{0.059}{5} \log 10^{-32}
\end{aligned}
$$

therefore : $\left|\mathrm{E}_{1}-\mathrm{E}_{2}\right|=\frac{0.059}{5} \times 32$

$$
\begin{aligned}
& =0.3776 \mathrm{~V}=3776 \times 10^{-4} \\
& x=3776
\end{aligned}
$$

3. Official Ans. by NTA (4)

Sol. If the partial pressure of NO and NO_{2} gas is taken as 1 bar, then Answer is 4 , else the question is bonus.

$$
\begin{gathered}
\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{NO}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}}^{\circ}=0.96 \mathrm{~V} \\
\mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

$$
\mathrm{E}_{\mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}=0.79}^{\mathrm{o}}
$$

Let $\left[\mathrm{HNO}_{3}\right]=\mathrm{y} \Rightarrow\left[\mathrm{H}^{+}\right]=\mathrm{y}$ and $\left[\mathrm{NO}_{3}\right]=\mathrm{y}$
for same thermodynamic tendency
$\mathrm{E}_{\mathrm{NO}_{3}^{-} \cdot \mathrm{NO}}=\mathrm{E}_{\mathrm{NO}_{\overline{3}} / \mathrm{NO}_{2}}$
or, $\mathrm{E}_{\mathrm{NO}_{\overline{3}} / \mathrm{NO}}^{\mathrm{o}}-\frac{0.059}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y} \times \mathrm{y}^{4}}$

$$
=\mathrm{E}_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}^{\mathrm{o}}-\frac{0.059}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y} \times \mathrm{y}^{2}}
$$

or, $0.96-\frac{0.059}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}=0.79-\frac{0.059}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y}^{3}}$
or, $0.17=-\frac{0.059}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y}^{3}}+\frac{0.059}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}$
$0.17=-\frac{0.0591}{1} \log \frac{\mathrm{P}_{\mathrm{NO}_{2}}}{\mathrm{y}^{3}}+\frac{0.0591}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}$
$0.17=-\frac{0.0591}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}^{2}}{3} \mathrm{y}^{9}+\frac{0.0591}{3} \log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}$
$0.17=\frac{0.0591}{3}\left[\log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}}-\log \frac{\mathrm{P}_{\mathrm{NO}_{2}}^{3}}{\mathrm{y}^{9}}\right]$
$0.17=\frac{0.0591}{3}\left[\log \frac{\mathrm{P}_{\mathrm{NO}}}{\mathrm{y}^{5}} \times \frac{\mathrm{y}^{9}}{\mathrm{P}_{\mathrm{NO}_{2}}^{3}}\right]$
Assume $\mathrm{P}_{\mathrm{NO}} \simeq \mathrm{P}_{\text {NO2 }}=1$ bar
$\frac{0.17 \times 3}{0.059}=\log y^{4}=8.644$
$\log y=\frac{8.644}{4}$
$\log y=2.161$
$y=10^{2.16}$
$\therefore 2 \mathrm{x}=2 \times 2.161=4.322$
Answer (4)
4. Official Ans. by NTA (25)

5 Official Ans by NTA (147)
Sol. $\mathrm{Zn}_{(\mathrm{s})} \rightarrow \mathrm{Zn}_{(\text {aq. })}^{2+}+2 \mathrm{e}^{-}$
$2 \mathrm{Ag}_{(\mathrm{aq})}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Ag}_{(\mathrm{s})}$
$\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{Ag}_{(\mathrm{aq},)}^{+} \rightarrow \mathrm{Zn}_{(\mathrm{aq},)}^{2+}+2 \mathrm{Ag}_{(\mathrm{s})}$
$\mathrm{E}_{\text {cell }}^{0}=\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{0}-\mathrm{E}_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{0}$
$=0.80-(-0.76)$
$=1.56 \mathrm{~V}$

$$
\begin{aligned}
& \mathrm{E}_{\text {cell }}=1.56 \frac{-0.059}{2} \log \frac{\left[\mathrm{Zn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \\
& =1.56-\frac{0.059}{2} \log \frac{0.1}{(0.01)^{2}} \\
& =1.56-\frac{0.059}{2} \times 3 \\
& =1.56-0.0885 \\
& =1.4715 \\
& =147.15 \times 10^{-2}
\end{aligned}
$$

6. Official Ans. by NTA (14)

Sol. Given conc ${ }^{\mathrm{n}}$ of $\mathrm{KCl}=\frac{\mathrm{m} \cdot \mathrm{mol}}{\mathrm{L}}$
: Conductance (G) $=0.55 \mathrm{mS}$
: Cell constant $\left(\frac{\ell}{\mathrm{A}}\right)=1.3 \mathrm{~cm}^{-1}$
To Calculate : Molar conductivity $\left(\lambda_{m}\right)$ of sol.
\rightarrow Since $\lambda_{\mathrm{m}}=\frac{1}{1000} \times \frac{\mathrm{k}}{\mathrm{m}}$
\rightarrow Molarity $=5 \times 10^{-3} \frac{\mathrm{~mol}}{\mathrm{~L}}$
\rightarrow Conductivity $=\mathrm{G} \times\left(\frac{\ell}{\mathrm{A}}\right)=0.55 \mathrm{mS} \times \frac{\frac{1.3}{\frac{1}{100}} \mathrm{~m}^{-1}}{}$
$=55 \times 1.3 \mathrm{mSm}^{-1}$
$\mathrm{eq}^{\mathrm{n}}(1) \lambda_{\mathrm{m}}=\frac{1}{1000} \times \frac{55 \times 1.3}{\left(\frac{5}{1000}\right)} \frac{\mathrm{mSm}^{2}}{\mathrm{~mol}}$
$\Rightarrow \lambda_{\mathrm{m}}=14.3 \frac{\mathrm{mSm}^{2}}{\mathrm{~mol}}$
7. Official Ans. by NTA (57)

Sol. $\kappa=\frac{1}{R} \cdot G^{*}$
For same conductivity cell, G^{*} is constant and hence κ. R. $=$ constant.
$\therefore 0.14 \times 4.19=\kappa \times 1.03$
or, κ of HCl solution $=\frac{0.14 \times 4.19}{1.03}$
$=0.5695 \mathrm{Sm}^{-1}$
$=56.95 \times 10^{-2} \mathrm{Sm}^{-1} \approx 57 \times 10^{-2} \mathrm{Sm}^{-1}$
8. Official Ans. by NTA (46)

Official Ans. by ALLEN (45)

Sol.

$\mathrm{E}_{1}^{0}+2 \mathrm{E}_{2}^{0}=3 \mathrm{E}_{3}^{0}$
$\mathrm{E}_{1}^{0}=3 \mathrm{E}_{3}^{0}-2 \mathrm{E}_{2}^{0}$
$=3(-0.036)-2(-0.44)$
$=+0.772 \mathrm{~V}$
$\mathrm{E}_{\mathrm{cell}}^{0}=\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}+\mathrm{E}_{\mathrm{\Gamma} / \mathrm{I}_{2}}^{0}=0.233$
$\Delta_{\mathrm{r}} \mathrm{G}^{0}=-2 \times 96.5 \times 0.233=-45 \mathrm{~kJ}$
9. Official Ans. by NTA (288)

Sol. From Kohlrausch's law
$\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{BaSO}_{4}\right)=\lambda_{\mathrm{m}}^{\infty}\left(\mathrm{Ba}^{2+}\right)+\lambda_{\mathrm{m}}^{\infty}\left(\mathrm{SO}_{4}^{2-}\right)$
$\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{BaSO}_{4}\right)=\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{BaCl}_{2}\right)+\Lambda_{\mathrm{m}}^{\infty}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

$$
-2 \Lambda_{\mathrm{m}}^{\infty}(\mathrm{HCl})
$$

$=280+860-2$ (426)
$=288 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$
10. Official Ans. by NTA (1)

Sol. Given balanced equation is
$\stackrel{\ominus}{0} \mathrm{H}+\stackrel{\ominus}{\mathrm{Cl}} \longrightarrow \mathrm{ClO}_{3}^{-}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{e}^{-}$
$\rightarrow 10 \mathrm{~g} \mathrm{KClO}_{3} \Rightarrow \frac{10}{122.6} \mathrm{~mol} \mathrm{KCO}_{3}$ in obtained
\rightarrow from the above reaction, it is concluded that by 6 F charge $1 \mathrm{~mol} \mathrm{KClO}_{3}$ is obtained.
\rightarrow By the passage of 6 F charge $=1 \mathrm{~mol} \mathrm{KClO}_{3}$
\therefore By the passage of $\frac{x \times 10 \times 60 \times 60}{96500} F$ charge

$$
=\frac{1}{6} \times \frac{x \times 10 \times 60 \times 60}{96500}
$$

Now $\frac{x \times 10 \times 60 \times 60}{6 \times 96500}=\frac{10}{122.6}$
$\Rightarrow \mathrm{x}=\frac{10 \times 965}{60 \times 122.6}=\frac{965}{735.6}=1.311 \simeq 1$
OR
$\mathrm{W}=\frac{\mathrm{E}}{\mathrm{F}} \times \mathrm{I} \times \mathrm{t}$
$10=\frac{122.6}{96500 \times 6} \times \mathrm{x} \times 10 \times 3600$
$\mathrm{X}=1.311$
Ans.(1)
11. Official Ans. by NTA (3)

Sol. $\mathrm{E}=\mathrm{E}^{\circ}-\frac{0.059}{2} \log \frac{\left[\mathrm{Cu}^{+2}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$
$=2.97-\frac{0.059}{2} \log \frac{0.25}{\left(10^{-3}\right)^{2}}=2.81 \mathrm{~V}$
12. Official Ans. by NTA (24)

Sol. $\mathrm{Zn} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{e}^{-}$
$2 \mathrm{Fe}^{3+} \longrightarrow 2 \mathrm{e}^{-}+2 \mathrm{e}^{2+}$
$\mathrm{Zn}+2 \mathrm{Fe}^{3+} \longrightarrow \mathrm{Zn}^{2+}+2 \mathrm{Fe}^{2+}$
$\mathrm{E}_{\text {cell }}^{0}=0.77-(0.76)$

$$
=1.53 \mathrm{~V}
$$

$1.50=1.53-\frac{0.06}{2} \log \left(\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}\right)^{2}$
$\log \left(\frac{\mathrm{Fe}^{2+}}{\mathrm{Fe}^{3+}}\right)=\frac{0.03}{0.06}=\frac{1}{2}$
$\frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}=10^{1 / 2}=\sqrt{10}$
$\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}=\frac{1}{\sqrt{10}}$
$\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]+\left[\mathrm{Fe}^{3+}\right]}=\frac{1}{1+\sqrt{10}}=\frac{1}{4.16}$
$=0.2402$
$=24 \times 10^{-2}$
13. Official Ans. by NTA (12)

Sol. $\quad \Lambda_{\mathrm{m}}=1000 \times \frac{\kappa}{\mathrm{M}}$
$=1000 \times \frac{2 \times 10^{-5}}{0.001}=20 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\Rightarrow \alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{\infty}}=\frac{20}{190}=\left(\frac{2}{19}\right)$
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
$0.001(1-\alpha) 0.001 \alpha 0.001 \alpha$
$\Rightarrow \mathrm{k}_{\mathrm{a}}=0.001\left(\frac{\alpha^{2}}{1-\alpha}\right)=\frac{0.001 \times\left(\frac{2}{19}\right)^{2}}{1-\left(\frac{2}{19}\right)}$

$$
=12.3 \times 10^{-6}
$$

14. Official Ans. by NTA (28)

Sol. Cell reaction is :

$$
\begin{array}{r}
\mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{~s}) \\
\\
\mathrm{Now}, \mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {Cell }}^{\mathrm{o}}-\frac{0.059}{2} \log \frac{\left[\mathrm{Cu}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}} \ldots \tag{2}\\
\therefore \quad \\
\mathrm{E}_{1}=0.3095=\mathrm{E}_{\text {Cell }}^{\mathrm{o}}-\frac{0.059}{2} \cdot \log \frac{0.01}{(0.001)^{2}} \ldots
\end{array}
$$

From (1) and (2), $\mathrm{E}_{2}=0.28 \mathrm{~V}=28 \times 10^{-2} \mathrm{~V}$
15. Official Ans. by NTA (4)

Sol.

Ion	H^{+}	K^{+}	Cl^{-}	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
$\Lambda_{\mathrm{mScm} 2 / \mathrm{mole}}^{\infty}$	349.8	73.5	76.3	40.9

So $\Lambda_{\mathrm{m} \mathrm{CH}}^{3} \mathrm{COOH}=\Lambda_{\mathrm{m}\left(\mathrm{H}^{+}\right)}^{\infty}+\Lambda_{\mathrm{m} \mathrm{CH}_{3} \mathrm{COO}^{-}}^{\infty}$

$$
\begin{aligned}
& =349.8+40.9 \\
& =390.7 \mathrm{Scm}^{2} / \mathrm{mole}
\end{aligned}
$$

$$
\begin{aligned}
\Lambda_{\mathrm{m} \mathrm{KCl}}^{\infty} & =\Lambda_{\mathrm{m}\left(\mathrm{~K}^{+}\right)}^{\infty}+\Lambda_{\mathrm{m}\left(\mathrm{Cl}^{-}\right)}^{\infty} \\
& =73.5+76.3 \\
& =149.3 \mathrm{Scm}^{2} / \mathrm{mole}
\end{aligned}
$$

So statement-I is wrong or False.

As the concentration decreases, the dilution increases which increases the degree of dissociation, thus increasing the no. of ions, which increases the molar conductance.

So statement-II is false.

16. Official Ans. by NTA (109)

Sol. Galvanic cell:

$$
\mathrm{Zn}_{(\mathrm{s})}+\underset{\substack{0.02 \mathrm{M}}}{\mathrm{Cu}_{(\text {aq. }}^{+2}} \rightarrow \underset{0.04 \mathrm{M}}{\mathrm{Zn}^{+2}}+\mathrm{Cu}(\mathrm{~s})
$$

Nernst equation $=\mathrm{F}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.059}{2} \log \frac{\left[2 \mathrm{n}^{+2}\right]}{\left[\mathrm{Cu}^{+2}\right]}$
$\Rightarrow \mathrm{E}_{\text {cell }}\left[\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\mathrm{E}_{\mathrm{Zn}^{+2} / \mathrm{Zn}}^{\mathrm{o}}\right]-\frac{0.059}{2} \log \frac{0.04}{0.02}$
$\Rightarrow \mathrm{E}_{\text {cell }}[0.34-(-0.76)]-\frac{0.059}{2} \log ^{2}$
$\Rightarrow \mathrm{E}_{\text {cell }} 1-1-\frac{0.059}{2} \times 0.3010$

$$
\begin{aligned}
& =1.0911=109.11 \times 10^{-2} \\
& =109
\end{aligned}
$$

17. Official Ans. by NTA (760)

Sol. $\quad \mathrm{K}=\frac{1}{\mathrm{R}} \times \ell / \mathrm{A}=\left(\left(\frac{1}{1500}\right) \times 1.14\right) \mathrm{S} \mathrm{cm}^{-1}$
$\Rightarrow \wedge_{\mathrm{m}}=1000 \times \frac{\left(\frac{1.14}{1500}\right)}{0.001} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$=760 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\Rightarrow 760$
18. Official Ans. by NTA (25)

Sol. $\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}{ }^{\mathrm{o}}=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}$
$=\frac{\Delta \mathrm{H}^{\mathrm{o}}+\mathrm{nFE}^{\mathrm{o}}}{\mathrm{T}}$
$=\frac{\left(-825.2 \times 10^{3}\right)+(2 \times 96487 \times 4.315)}{298}$
$=\frac{-825.2 \times 10^{3}+832.682 \times 10^{3}}{298}$
$=\frac{7.483 \times 10^{3}}{298}=25.11 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
\therefore Nearest integer answer is 25
19. Official Ans. by NTA (1)

Sol. Cell constant $=\left(\frac{\ell}{\mathrm{A}}\right) \Rightarrow$ Units $=\mathrm{m}^{-1}$
Molar conductivity $\left(\Lambda_{\mathrm{m}}\right) \Rightarrow$ Units $=\mathrm{Sm}^{2}$ mole $^{-1}$
Conductivity $(\mathrm{K}) \Rightarrow$ Units $=\mathrm{S} \mathrm{m}^{-1}$
Degree of dissociation $(\alpha) \rightarrow$ Dimensionless
\therefore (a) - (iii)
(b) - (i)
(c) - (iv)
(d) - (ii)
20. Official Ans. by NTA (26)

Sol. $\mathrm{k}=1.07 \times 10^{6} \mathrm{Sm}^{-1}, \quad \mathrm{R}=0.243 \Omega$

$$
\mathrm{G}=\frac{1}{\mathrm{R}}=\frac{1}{0.243} \Omega^{-1}
$$

$\mathrm{k}=\mathrm{G} \times \mathrm{G}^{*}$
$\mathrm{G}^{*}=\frac{\mathrm{k}}{\mathrm{G}}=\frac{1.07 \times 10^{6}}{\frac{1}{0.243}} \simeq 26 \times 10^{4} \mathrm{~m}^{-1}$

