CONCENTRATION TERMS

1. A 6.50 molal solution of KOH (aq.) has a density of 1.89 g cm⁻³. The molarity of the solution is _____ mol dm⁻³. (Round off to the Nearest Integer).

[Atomic masses: K :39.0 u; O :16.0 u; H :1.0 u]

- 2. When 35 mL of 0.15 M lead nitrate solution is mixed with 20 mL of 0.12 M chromic sulphate solution, _____ × 10⁻⁵ moles of lead sulphate precipitate out. (Round off to the Nearest Integer).
- The mole fraction of a solute in a 100 molal aqueous solution _____ × 10⁻².
 (Round off to the Nearest Integer).
 [Given: Atomic masses: H: 1.0 u, O: 16.0 u]
- 4. An aqueous KCl solution of density 1.20 g mL^{-1} has a molality of 3.30 mol kg^{-1} . The molarity of the solution in mol L⁻¹ is _____ (Nearest integer)

[Molar mass of KCl = 74.5]

5. 100 mL of Na_3PO_4 solution contains 3.45 g of sodium. The molarity of the solution is ____ $\times 10^{-2}$ mol L⁻¹ . (Nearest integer)

[Atomic Masses-Na : 23.0 u, O : 16.0 u, P : 31.0 u]

6. The molarity of the solution prepared by dissolving 6.3 g of oxalic acid ($H_2C_2O_4.2H_2O$) in 250 mL of water in mol L^{-1} is $x \times 10^{-2}$. The value of x is _____. (Nearest integer)

[Atomic mass: H: 1.0, C: 12.0, O: 16.0]

7. Sodium oxide reacts with water to produce sodium hydroxide. 20.0 g of sodium oxide is dissolved in 500 mL of water. Neglecting the change in volume, the concentration of the resulting NaOH solution is _____ ×10⁻¹ M. (Nearest integer)

[Atomic mass : Na = 23.0, O = 16.0, H = 1.0]

8. If 80 g of copper sulphate $CuSO_4 \cdot 5H_2O$ is dissolved in deionised water to make 5 L of solution. The concentration of the copper sulphate solution is $x \times 10^{-3}$ mol L^{-1} . The value of x is ______.

[Atomic masses Cu : 63.54 u, S : 32 u, O : 16 u, H : 1 u]

ALLEN®

SOLUTION

1. Official Ans. by NTA (9)

so wt of solute =
$$6.5 \times 56$$

$$= 364 \text{ gm}$$

wt of solution =
$$1000 + 364 = 1364$$

Volume of solution =
$$\frac{1364}{1.89}$$
 m ℓ

$$Molarity = \frac{mole of solute}{V_{solution} in Litre}$$
$$= \frac{6.5 \times 1.89 \times 1000}{1364}$$

2. Official Ans. by NTA (525)

= 9.00

Sol. 3 Pb
$$(NO_3)_2 + Cr_2 (SO_4)_3 \rightarrow 3PbSO_4 + 2Cr(NO_3)_3$$

$$= 5.25 \text{ m.mol} = 2.4 \text{ m.mol} 5.25 \text{ m.mol}$$

$$= 5.25 \times 10^{-3} \text{ mol}$$

therefore moles of PbSO₄ formed = 5.25×10^{-3}

$$=525 \times 10^{-5}$$

3. Official Ans. by NTA (64)

Sol. 100 molal aqueous solution means there is 100 mole solute in 1 kg = 1000 gm water.

Now,

$$mole-fraction of solute = \frac{n_{solute}}{n_{solute} + n_{solvent}}$$

$$=\frac{100}{100+\frac{1000}{18}}=\frac{1800}{2800}=0.6428$$

$$=64.28 \times 10^{-2}$$

4. Official Ans. by NTA (3)

Sol. 1000 kg solvent has 3.3 moles of KCl

1000 kg solvent
$$\longrightarrow$$
 3.3 × 74.5 gm KCl

$$\longrightarrow$$
 245.85

Weight of solution = 1245.85 gm

Volume of solution =
$$\frac{1245.85}{1.2}$$
 ml

So molarity =
$$\frac{3.3 \times 1.2}{1245.85} \times 1000 = 3.17$$

5. Official Ans. by NTA (50)

Sol.
$$\begin{bmatrix} Na_3PO_4 \\ \frac{1}{3} \times \frac{3.45}{23} & 3.45g \\ 100ml Sol. & \frac{3.45}{23} & 3.45g \\ \end{bmatrix}$$

therefore molarity of Na₃PO₄ Solution =

$$\frac{n_{\text{Na}_3\text{PO}_4}}{\text{volume of solution in L}}$$

$$=\frac{\frac{1}{3}\times\frac{3.45}{23}\,\text{mol}}{0.1\,\text{L}}$$

$$= 0.5 = 50 \times 10^{-2}$$

6. Official Ans. by NTA (20)

Sol.
$$[H_2C_2O_4.2H_2O] = \frac{\text{weight/M}_W}{V(L)}$$

$$\Rightarrow$$
 x × 10⁻² = $\frac{6.3 / 126}{250 / 1000}$

$$x = 20$$

7. Official Ans. by NTA (13)

Sol. Na₂O + H₂O
$$\rightarrow$$
 2NaOH

$$\frac{20}{62}$$
 moles

Moles of NaOH formed = $\frac{20}{62} \times 2$

[NaOH] =
$$\frac{\frac{40}{62}}{\frac{500}{1000}}$$
 = 1.29 M = 13 × 10⁻¹ M

(Nearest integer)

8. Official Ans. by NTA (64)

Sol. Moles of
$$CuSO_4 \cdot 5H_2O = \frac{80}{249.54}$$

Molarity =
$$\frac{80}{249.54}$$
 = 64.117 × 10⁻³

Nearest integer, x = 64