CHEMICAL KINETICS

1. Sucrose hydrolyses in acid solution into glucose and fructose following first order rate law with a half-life of 3.33 h at $25^{\circ} \mathrm{C}$. After 9 h , the fraction of sucrose remaining is f. The value of $\log _{10}\left(\frac{1}{f}\right)$ is $\ldots 10^{-2}$. (Rounded off to the nearest integer)
[Assume $: \ln 10=2.303, \ln 2=0.693]$
2. For the reaction, $\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}$, the plot of $\log \mathrm{k}$ vs $\frac{1}{\mathrm{~T}}$ is given below :

The temperature at which the rate constant of the reaction is $10^{-4} \mathrm{~s}^{-1}$ is \qquad K.
(Rounded-off to the nearest integer)
[Given : The rate constant of the reaction is $10^{-5} \mathrm{~s}^{-1}$ at 500 K .]
3. The rate constant of a reaction increases by five times on increase in temperature from $27^{\circ} \mathrm{C}$ to $52^{\circ} \mathrm{C}$. The value of activation energy in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad (Rounded-off to the nearest integer) $\left[\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right]$
4. An exothermic reaction $\mathrm{X} \rightarrow \mathrm{Y}$ has an activation energy $30 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If energy change $\Delta \mathrm{E}$ during the reaction is -20 kJ , then the activation energy for the reverse reaction in kJ is \qquad .(Integer answer)
5. If the activation energy of a reaction is 80.9 kJ mol^{-1}, the fraction of molecules at 700 K , having enough energy to react to form products is e^{-x}. The value of x is \qquad _.
(Rounded off to the nearest integer)
[Use $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
6. Gaseous cyclobutene isomerizes to butadiene in a first order process which has a ' k ' value of $3.3 \times 10^{-4} \mathrm{~s}^{-1}$ at $153^{\circ} \mathrm{C}$. The time in minutes it takes for the isomerization to proceed 40% to completion at this temperature is \qquad . (Rounded off to the nearest integer)
7. The decomposition of formic acid on gold surface follows first order kinetics. If the rate constant at 300 K is $1.0 \times 10^{-3} \mathrm{~s}^{-1}$ and the activation energy $\mathrm{E}_{\mathrm{a}}=11.488 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the rate constant at 200 K is \qquad $\times 10^{-5} \mathrm{~s}^{-1}$. (Round of to the Nearest Integer).
(Given : $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$)
8. A and B decompose via first order kinetics with half-lives 54.0 min and 18.0 min respectively. Starting from an equimolar non reactive mixture of A and B , the time taken for the concentration of A to become 16 times that of B is \qquad min. (Round off to the Nearest Integer).
9. For a certain first order reaction 32% of the reactant is left after 570 s . The rate constant of this reaction is \qquad $\times 10^{-3} \mathrm{~s}^{-1}$. (Round off to the Nearest Integer).
[Given : $\left.\log _{10} 2=0.301, \ln 10=2.303\right]$
10. The reaction $2 \mathrm{~A}+\mathrm{B}_{2} \rightarrow 2 \mathrm{AB}$ is an elementary reaction.
For a certain quantity of reactants, if the volume of the reaction vessel is reduced by a factor of 3 , the rate of the reaction increases by a factor of \qquad . (Round off to the Nearest Integer).
11. $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{s})$

This reaction was studied at $-10^{\circ} \mathrm{C}$ and the following data was obtained
run $\quad[\mathrm{NO}]_{0} \quad\left[\begin{array}{cc}{\left[\mathrm{Cl}_{2}\right]_{0}} & \mathrm{r}_{0}\end{array}\right.$
$\begin{array}{llll}1 & 0.10 & 0.10 & 0.18\end{array}$
$2 \quad 0.10 \quad 0.20 \quad 0.35$
$\begin{array}{llll}3 & 0.20 & 0.20 & 1.40\end{array}$
$[\mathrm{NO}]_{0}$ and $\left[\mathrm{Cl}_{2}\right]_{0}$ are the initial concentrations and r_{0} is the initial reaction rate.

The overall order of the reaction is \qquad .
(Round off to the Nearest Integer).
$2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{s})$
12. A reaction has a half life of 1 min . The time required for 99.9% completion of the reaction is
\qquad min. (Round off to the Nearest integer)
[Use $: \ln 2=0.69, \ln 10=2.3]$
13. The inactivation rate of a viral preparation is proportional to the amount of virus. In the first minute after preparation, 10% of the virus is inactivated. The rate constant for viral inactivation is \qquad $\times 10^{-3} \mathrm{~min}^{-1}$.
(Nearest integer)
[Use : $\ln 10=2.303 ; \log _{10} 3=0.477$;
property of $\left.\operatorname{logarithm}: \log x^{y}=y \log x\right]$
14. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

In the above first order reaction the concentration of PCl_{5} reduces from initial concentration $50 \mathrm{~mol} \mathrm{~L}^{-1}$ to $10 \mathrm{~mol} \mathrm{~L}^{-1}$ in 120 minutes at 300 K . The rate constant for the reaction at 300 K is $\mathrm{x} \times 10^{-2} \mathrm{~min}^{-1}$. The value of x is \qquad . [Given $\log 5=0.6989]$
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
15. $\quad \mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}$

In the above first order reaction the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $2.40 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$ at 318 K . The concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 1 hour was $1.60 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$. The rate constant of the reaction at 318 K is \qquad
$\times 10^{-3} \min ^{-1}$. (Nearest integer)
[Given : $\log 3=0.477, \log 5=0.699]$
$\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}$
16. For the following graphs,
(a)

(b)

(c)

(d)

(e)

Choose from the options given below, the correct one regarding order of reaction is :
(1) (b) zero order (c) and (e) First order
(2) (a) and (b) Zero order (e) First order
(3) (b) and (d) Zero order (e) First order
(4) (a) and (b) Zero order (c) and (e) First order
17. For a chemical reaction $A \rightarrow B$, it was found that concentration of B is increased by $0.2 \mathrm{~mol} \mathrm{~L}^{-1}$ in 30 min . The average rate of the reaction is \qquad $\times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~h}^{-1}$. (in nearest integer)
18. The number of neutrons and electrons, respectively, present in the radioactive isotope of hydrogen is :-
(1) 1 and 1
(2) 3 and 1
(3) 2 and 1
(4) 2 and 2
19. In a solvent 50% of an acid HA dimerizes and the rest dissociates. The van't Hoff factor of the acid is \qquad $\times 10^{-2}$.
(Round off to the nearest integer)
20. For the first order reaction $A \rightarrow 2 B, 1$ mole of reactant A gives 0.2 moles of B after 100 minutes. The half life of the reaction is \qquad \min.
(Round off to the nearest integer).
[Use $: \ln 2=0.69, \ln 10=2.3$
Properties of logarithms: $\ln x^{y}=y \ln x$;
$\left.\ln \left(\frac{x}{y}\right)=\ln x-\ln y\right]$
(Round off to the nearest integer)
21. The reaction that occurs in a breath analyser, a device used to determine the alcohol level in a person's blood stream is
$2 \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+8 \mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \rightarrow 2 \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+$ $3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+11 \mathrm{H}_{2} \mathrm{O}$

If the rate of appearance of $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is 2.67 mol $\min ^{-1}$ at a particular time, the rate of disappearance of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ at the same time is
\qquad mol min^{-1}. (Nearest integer)
22. The first order rate constant for the decomposition of CaCO_{3} at 700 K is $6.36 \times 10^{-3} \mathrm{~s}^{-1}$ and activation energy is $209 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Its rate constant (in s ${ }^{-1}$) at 600 K is $\mathrm{x} \times 10^{-6}$. The value of x is \qquad . (Nearest integer)
[Given $\mathrm{R}=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} ; \log 6.36 \times 10^{-3}$ $\left.=-2.19,10^{-4.79}=1.62 \times 10^{-5}\right]$
23. For a first order reaction, the ratio of the time for 75% completion of a reaction to the time for 50% completion is \qquad . (Integer answer)
24. According to the following figure, the magnitude of the enthalpy change of the reaction
$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{M}+\mathrm{N}$ in $\mathrm{kJ} \mathrm{mol}^{-1}$ is equal to \qquad . (Integer answer)

25. For the reaction $\mathrm{A} \rightarrow \mathrm{B}$, the rate constant $\mathrm{k}\left(\mathrm{in} \mathrm{s}^{-1}\right)$ is given by

$$
\log _{10} \mathrm{k}=20.35-\frac{\left(2.47 \times 10^{3}\right)}{\mathrm{T}}
$$

The energy of activation in $\mathrm{kJ} \mathrm{mol}^{-1}$ is \qquad .
(Nearest integer)
[Given : $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
26. Which one of the following given graphs represents the variation of rate constant (k) with temperature (T) for an endothermic reaction?
(1)

(2)

(3)

(4)

SOLUTION

1. Official Ans. by NTA (81)

Sol. Given :
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{t}_{12}=\frac{10}{3} \text { hr }]{\mathrm{I} \text { order }} \underset{\text { Glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\underset{\text { Fructose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$
$\mathrm{t}=0 \quad \mathrm{a}=[\mathrm{A}]_{0}$
$\mathrm{t}=9 \mathrm{hr} \quad \mathrm{a}-\mathrm{x}=[\mathrm{A}]_{\mathrm{t}}$
from I order kinetic : $\frac{\mathrm{k} \times \mathrm{t}}{2.303}=\log \frac{|\mathrm{A}|_{0}}{|\mathrm{~A}|_{\mathrm{t}}}$

$$
\begin{aligned}
& \Rightarrow \frac{\ln 2 \times 9}{\frac{10}{3} \times 2.303}=\log \left(\frac{1}{\mathrm{f}}\right) \\
& \Rightarrow \frac{0.693 \times 9 \times 3}{23.03}=\log \left(\frac{1}{\mathrm{f}}\right) \\
& \Rightarrow \log \left(\frac{1}{\mathrm{f}}\right)=0.81246=81.24 \times 10^{-2} \\
& \Rightarrow x=81
\end{aligned}
$$

2. Official Ans. by NTA (526)

Sol. $\log \mathrm{K}=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{RT}}$
\mid Slope $\left\lvert\,=\frac{\mathrm{Ea}}{2 \cdot 303 \mathrm{R}}=10\right.,000$
$\log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\mathrm{Ea}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right)$
$\log \left(\frac{10^{-4}}{10^{-5}}\right)=10,000\left[\frac{1}{500}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\mathrm{T}_{2}=526.31 \simeq 526 \mathrm{~K}$
Hence answer is (526)
3. Official Ans. by NTA (52)

Sol. $\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{~T}_{2}=325 \mathrm{~K}, \mathrm{~K}_{2}=5 \mathrm{~K}$,

$$
\begin{aligned}
& \ln \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\mathrm{Ea}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] \\
& \text { or, } \ln 5=\frac{\mathrm{Ea}}{8.314}\left[\frac{1}{300}-\frac{1}{325}\right] \\
& \text { or, } \mathrm{Ea}=0.7 \times 2.303 \times 8.314 \times 12 \times 325 \\
& \quad=52271 \mathrm{~J}=52.271 \mathrm{~kJ}
\end{aligned}
$$

Nearest integer answer will be 52 kJ
4. Official Ans. by NTA (50)

Sol. $\mathrm{X} \longrightarrow \mathrm{Y}$

5. Official Ans by NTA (14)

Sol. Fraction of molecules to have enough energy to
react $=\mathrm{e}^{-\mathrm{Ea} / \text { RT }}$
So, $x=\frac{E_{a}}{R T}$
$=\frac{80.9 \times 10^{3}}{8.31 \times 700}$
$=13.9$
6. Official Ans. by NTA (26)

Sol.

$K t=\ln \frac{[A]_{0}}{[A]_{t}}$
$3.3 \times 10^{-4} \times \mathrm{t}=\ln \left(\frac{100}{60}\right)$
$\mathrm{t}=1547.956 \mathrm{sec}$
$\mathrm{t}=25.799 \mathrm{~min}$
26 min
7. Official Ans. by NTA (10)

Sol.
$\mathrm{K}_{300}=10^{-4} \quad \mathrm{~K}_{200}=?$
$\mathrm{E}_{\mathrm{a}}=11.488 \mathrm{KJ} / \mathrm{mole} \quad \mathrm{R}=8.314 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$
so $\ln \left(\frac{\mathrm{K}_{300}}{\mathrm{~K}_{200}}\right)=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left(\frac{1}{200}-\frac{1}{300}\right)$
$\ln \left(\frac{\mathrm{K}_{300}}{\mathrm{~K}_{200}}\right)=\frac{11.488 \times 1000 \times 100}{8.314 \times 200 \times 300}$
$\quad=2.303$
$\quad=\ln 10$
so $\frac{\mathrm{K}_{300}}{\mathrm{~K}_{200}}=10$
$\mathrm{K}_{200}=\frac{1}{10} \times \mathrm{K}_{300}=10^{-4}$
$=10 \times 10^{-5} \sec ^{-1}$

8. Official Ans. by NTA (108)

Sol. Given $\mathrm{t}_{2}=54 \mathrm{~min}$
A
B
$\mathrm{t}=0 \quad{ }^{\prime} \mathrm{x}^{\prime} \mathrm{M}$
$\mathrm{t}=0$ ' x ' M
$\Rightarrow \quad$ To calculate $:\left[\mathrm{A}_{\mathrm{t}}\right]=16 \times\left[\mathrm{B}_{\mathrm{t}}\right] \ldots .(1)$ time $=$?
$\Rightarrow \quad$ For I order kinetic : $\left[\mathrm{A}_{\mathrm{t}}\right]=\frac{\mathrm{A}_{0}}{(2)^{\mathrm{n}}}$
$\mathrm{n} \rightarrow$ no of Half lives
$\Rightarrow \quad$ Now from the relation (1)
$\left[\mathrm{A}_{\mathrm{t}}\right]=16 \times\left[\mathrm{B}_{\mathrm{t}}\right]$
$\Rightarrow \quad \frac{\mathrm{x}}{(2)^{\mathrm{n}_{1}}}=\frac{\mathrm{x}}{(2)^{\mathrm{n}_{2}}} \times 16 \Rightarrow(2)^{\mathrm{n}_{2}}=(2)^{\mathrm{n}_{1}} \times(2)^{4}$
$\Rightarrow \quad \mathrm{n}_{2}=\mathrm{n}_{1}+4 \quad \Rightarrow \frac{\mathrm{t}}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{\mathrm{t}}{\left(\mathrm{t}_{1 / 2}\right)_{1}}+4$
$\Rightarrow \quad \mathrm{t}\left(\frac{1}{18}-\frac{1}{54}\right)=4 \Rightarrow \mathrm{t}=\frac{4 \times 18 \times 54}{36}$
$\Rightarrow \quad t=108 \mathrm{~min}$
9. Official Ans. by NTA (2)

Sol. For $1^{\text {st }}$ order reaction,

$$
\begin{aligned}
\mathrm{K} & =\frac{2.303}{\mathrm{t}} \cdot \log \frac{\left[\mathrm{~A}_{0}\right]}{\left[\mathrm{A}_{\mathrm{t}}\right]}=\frac{2.303}{570 \mathrm{sec}} \cdot \log \left(\frac{100}{32}\right) \\
& =1.999 \times 10^{-3} \mathrm{sec}^{-1} \approx 2 \times 10^{-3} \mathrm{sec}^{-1}
\end{aligned}
$$

10. Official Ans. by NTA (27)

Sol. Reaction : $2 \mathrm{~A}+\mathrm{B}_{2} \longrightarrow 2 \mathrm{AB}$
As the reaction is elementary, the rate of reaction is
$\mathrm{r}=\mathrm{K} \cdot[\mathrm{A}]^{2}\left[\mathrm{~B}_{2}\right]$
on reducing the volume by a factor of 3 , the concentrations of A and B_{2} will become 3 times and hence, the rate becomes $3^{2} \times 3=27$ times of initial rate.
11. Official Ans. by NTA (3)

Sol. $\quad \mathrm{r}=\mathrm{k}[\mathrm{NO}]^{\mathrm{m}}\left[\mathrm{Cl}_{2}\right]^{\mathrm{n}}$
$=\mathrm{k}(0.1)^{\mathrm{m}}(0.1)^{\mathrm{n}}$
$=\mathrm{k}(0.1)^{\mathrm{m}}(0.2)^{\mathrm{n}}$
$=\mathrm{k}(0.2)^{\mathrm{m}}(0.2)^{\mathrm{n}}$
$\mathrm{n}=1$
$\mathrm{m}=2$
$\mathrm{m}+\mathrm{n}=3$
12. Official Ans. by NTA (10)

Sol. $\frac{\mathrm{t}_{99.9 \%}}{\mathrm{t}_{50 \%}}=\frac{\frac{1}{\mathrm{~K}} \ln \frac{100}{0.1}}{\frac{1}{\mathrm{~K}} \ln 2}$
$=\frac{\ln 1000}{\ln 2} \times \mathrm{t}_{50 \%}$
$=\frac{3 \ln 10}{\ln 2} \times 1$
$=\frac{3 \times 2.3}{0.69}=10$
13. Official Ans. by NTA (106)

Sol. As the unit of rate constant is $\min ^{-1}$ so it must be a first order reaction
$\mathrm{K} \times \mathrm{t}=2.303 \log \mathrm{~A}_{0} / \mathrm{A}_{\mathrm{t}}$
in $1 \mathrm{~min} 10 \%$ is in activated so tabing
$\mathrm{A}_{0}=100 \mathrm{~A}_{\mathrm{t}}=90$ in 1 min

So $K \times 1=2.303 \times \log \frac{100}{90}$
$=2.303 \times(\log 10-2 \log 3)$
$=2.303 \times(1-2 \times 0.477)$
$=0.10593$
$=105.93 \times 10^{-3}$
≈ 106
14. Official Ans. by NTA (1)

Sol. $\quad \mathrm{PCl}_{5(\mathrm{~g})} \xrightarrow[300 \mathrm{~K}]{\mathrm{I} \text { order }} \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
$\mathrm{t}=0 \quad 50 \mathrm{M}$
$t=120 \min 10 M$
$\Rightarrow \mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{A}_{0}\right]}{\left[\mathrm{A}_{\mathrm{t}}\right]}$
$\Rightarrow \mathrm{K}=\frac{2.303}{120} \log \frac{50}{10}$
$\Rightarrow \mathrm{K}=\frac{2.303}{120} \times 0.6989=0.013413 \mathrm{~min}^{-1}$

$$
=1.3413 \times 10^{-2} \mathrm{~min}^{-1}
$$

$1.34 \Rightarrow$ Nearest integer $=1$
15. Official Ans. by NTA (7)

Sol. $\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]_{\mathrm{t}}}$
$=\frac{2.303}{60} \log \frac{2.4}{1.6}=6.76 \times 10^{-3} \mathrm{~min}^{-1} \approx 7 \times 10^{-3} \mathrm{~min}^{-1}$
16. Official Ans. by NTA (4)
17. Official Ans. by NTA (4)
$\mathrm{A} \longrightarrow \mathrm{B}$
Sol. $\quad \mathrm{t}=0$ 0
$\mathrm{t}=30 \mathrm{~min}$ 0.2 M

Av. rate of reaction $=-\frac{\Delta[\mathrm{A}]}{\Delta \mathrm{t}}=\frac{\Delta[\mathrm{B}]}{\Delta \mathrm{t}}=\frac{(0.2-0)}{\frac{1}{2}}$ $=0.4=4 \times 10^{-1} \mathrm{~mol} / \mathrm{L} \times \mathrm{hr}$
18. Official Ans. by NTA (3)

Sol. Radioactive isotope of hydrogen is Tritium $\left({ }_{1}^{3} \mathrm{~T}\right)$

No. of neutrons $(A-Z)=3-1=2$
No. of electrons $=1$
19. Official Ans. by NTA (125)

Sol. $\quad 2 \mathrm{HA} \rightleftharpoons \mathrm{H}_{2} \mathrm{~A}_{2} \mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}$

Initial moles $\mathrm{a} \times \frac{50}{100} \quad 0 \quad \mathrm{a} \times \frac{50}{100} \quad 0 \quad 0$
$\begin{array}{llllll}\text { Final moles } & 0 & 0.25 \mathrm{a} & 0 & 0.5 \mathrm{a} & 0.5 \mathrm{a}\end{array}$

Now, $\quad i=\frac{\text { finalmoles }}{\text { initialmoles }}=\frac{0.25 \mathrm{a}+0.5 \mathrm{a}+0.5 \mathrm{a}}{0.5 \mathrm{a}+0.5 \mathrm{a}}$

$$
=1.25=125 \times 10^{-2}
$$

20. Official Ans. by NTA (300)

Sol.
$\mathrm{A} \longrightarrow 2 \mathrm{~B}$

$$
\begin{array}{ccc}
\mathrm{t}=0 & 1 \text { mole } 0 \\
\mathrm{t}=100 \mathrm{~min} & 1-\mathrm{x} \quad 2 \mathrm{x} \\
& =0.9 \mathrm{~mol}=0.2 \mathrm{~mol}
\end{array}
$$

Now, $\mathrm{t}=\frac{\mathrm{t}_{1 / 2}}{\ln 2} \times \frac{\left[\mathrm{A}_{0}\right]}{\left[\mathrm{A}_{\mathrm{t}}\right]}$

$$
100=\frac{\mathrm{t}_{1 / 2}}{\ln 2} \times \ln \frac{1}{0.9} \Rightarrow \mathrm{t}_{1 / 2}=690 \mathrm{~min} .
$$

$$
(\text { taking } \ln 3=1.11)
$$

21. Official Ans. by NTA (4)

Sol. $\left(\frac{\text { Rate of disappearance of } \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}}{3}\right)$
$=\left(\frac{\text { Rate of appearance of } \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{2}\right)$
$\Rightarrow\left(\frac{2.67 \mathrm{~mol} / \min \times 3}{2}\right)=$ rate of disappearance of
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.
\Rightarrow Rate of disappearance of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}=4.005$
$\mathrm{mol} / \mathrm{min}$
22. Official Ans. by NTA (16)

Sol. $\quad K_{700}=6.36 \times 10^{-3} \mathrm{~s}^{-1}$;
$\mathrm{K}_{600}=x \times 10^{-6} \mathrm{~s}^{-1}$
$\mathrm{E}_{\mathrm{a}}=209 \mathrm{~kJ} / \mathrm{mol}$
Applying ;
$\log \left(\frac{\mathrm{K}_{\mathrm{T}_{2}}}{\mathrm{~K}_{\mathrm{T}_{1}}}\right)=\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\left(\frac{1}{\mathrm{~T}_{2}}-\frac{1}{\mathrm{~T}_{1}}\right)$
$\log \left(\frac{\mathrm{K}_{700}}{\mathrm{~K}_{600}}\right)=\frac{-\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{R}}\left(\frac{1}{700}-\frac{1}{600}\right)$
$\log \left(\frac{6.36 \times 10^{-3}}{\mathrm{~K}_{600}}\right)=\frac{+209 \times 1000}{2.303 \times 8.31}\left(\frac{100}{700 \times 600}\right)$
$\log \left(6.36 \times 10^{-3}\right)-\log \mathrm{K}_{600}=2.6$
$\Rightarrow \operatorname{logK}_{600}=-2.19-2.6=-4.79$
$\Rightarrow K_{600}=10^{-4.79}=1.62 \times 10^{-5}$
$=16.2 \times 10^{-6}$
$=x \times 10^{-6}$
$\Rightarrow \mathrm{x}=16$
23. Official Ans. by NTA (2)

Sol. $\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{\mathrm{a}}{\mathrm{a}-\mathrm{x}}$
$\frac{2.303}{\mathrm{t}_{50 \%}} \log \frac{100}{100-50}=\frac{2.303}{\mathrm{t}_{75 \%}} \log \frac{100}{100-75}$
$\mathrm{t}_{75 \%}=2 \mathrm{t}_{50 \%}$
24. Official Ans. by NTA (45)

Sol.

$$
\begin{aligned}
& \Delta \mathrm{H}=\mathrm{E}_{\mathrm{a}_{\mathrm{f}}}-\mathrm{E}_{\mathrm{a}_{\mathrm{b}}} \\
& =20-65 \\
& =-45 \mathrm{KJ} / \mathrm{mol}
\end{aligned}
$$

$|\Delta \mathrm{H}|=45 \mathrm{KJ} / \mathrm{mol}$
25. Official Ans. by NTA (47)

Sol. Given $\log \mathrm{K}=20.35-\frac{2.47 \times 10^{3}}{\mathrm{~T}}$
We know $\quad \log \mathrm{K}=\log \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}$

$$
\Rightarrow \quad \frac{\mathrm{E}_{\mathrm{a}}}{2.303 \mathrm{RT}}=2.47 \times 10^{3}
$$

$\mathrm{E}_{\mathrm{a}}=2.47 \times 10^{3} \times 2.303 \times \frac{8.314}{1000} \mathrm{KJ} / \mathrm{mole}$

$$
=47.29=47 \text { (Nearest integer) }
$$

26. Official Ans. by NTA (3)

Sol. By observation we get this plot during measurable temperatures
Ans. $3^{\text {rd }}$ Option.

