WAVE OPTICS

1. Visible light of wavelength $6000 \times 10^{-8} \mathrm{~cm}$ falls normally on a single slit and produces a diffraction pattern. It is found that the second diffraction minimum is at 60° from the central maximum. If the first minimum is produced at θ_{1}, then θ_{1} is close to :
(1) 20°
(2) 45°
(3) 30°
(4) 25°
2. A polarizer - analyser set is adjusted such that the intensity of light coming out of the analyser is just 10% of the original intensity. Assuming that the polarizer - analyser set does not absorb any light, the angle by which the analyser need to be rotated further to reduce the output intensity to be zero, is :
(1) 18.4°
(2) 71.6°
(3) 90°
(4) 45°
3. In a Young's double slit experiment, the separation between the slits is 0.15 mm . In the experiment, a source of light of wavelength 589 nm is used and the interference pattern is observed on a screen kept 1.5 m away. The separation between the successive bright fringes on the screen is :
(1) 6.9 mm
(2) 5.9 mm
(3) 4.9 mm
(4) 3.9 mm
4. In a double slit experiment, at a certain point on the screen the path difference between the
two interfering waves is $\frac{1}{8}$ th of a wavelength.
The ratio of the intensity of light at that point to that at the centre of a bright fringe is :
(1) 0.568
(2) 0.672
(3) 0.760
(4) 0.853
5. The aperture diameter of a telescope is 5 m . The separation between the moon and the earth is $4 \times 10^{5} \mathrm{~km}$. With light of wavelength of $5500 \AA$, the minimum separation between objects on the surface of moon, so that they are just resolved, is close to :
(1) 20 m
(2) 600 m
(3) 60 m
(4) 200 m
6. A plane electromagnetic wave is propagating along the direction $\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}$, with its polarization along the direction $\hat{\mathrm{k}}$. The correct form of the magnetic field of the wave would be (here B_{0} is an appropriate constant) :
(1)

$$
\mathrm{B}_{0} \frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)
$$

$$
\begin{equation*}
B_{0} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}-\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right) \tag{2}
\end{equation*}
$$

(3)

$$
B_{0} \hat{k} \cos \left(\omega t-k \frac{\hat{i}+\hat{j}}{\sqrt{2}}\right)
$$

(4)
$B_{0} \frac{\hat{\mathrm{j}}-\hat{\mathrm{i}}}{\sqrt{2}} \cos \left(\omega \mathrm{t}+\mathrm{k} \frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}\right)$
7. Interference fringes are observed on a screen by illuminating two thin slits 1 mm apart with a light source $(\lambda=632.8 \mathrm{~nm})$. The distance between the screen and the slits is 100 cm . If a bright fringe is observed on a screen at a distance of 1.27 mm from the central bright fringe, then the path difference between the waves, which are reaching this point from the slits is close to :
(1) $1.27 \mu \mathrm{~m}$
(2) 2 nm
(3) 2.87 nm
(4) $2.05 \mu \mathrm{~m}$
8. In a Young's double slit experiment, 16 fringes are observed in a certain segment of the screen when light of wavelength 700 nm is used. If the wavelength of light is changed to 400 nm , the number of fringes observed in the same segment of the screen would be :
(1) 28
(2) 24
(3) 18
(4) 30
9. In a Young's double slit experiment, light of 500 nm is used to produce an interference pattern. When the distance between the slits is 0.05 mm , the angular width (in degree) of the fringes formed on the distance screen is close to :
(1) 0.07°
(2) 0.17°
(3) 1.7°
(4) 0.57°
10. Two light waves having the same wavelength λ in vacuum are in phase initially. Then the first wave travels a path L_{1} through a medium of refractive index n_{1} while the second wave travels a path of length L_{2} through a medium of refractive index n_{2}. After this the phase difference between the two waves is:
(1) $\frac{2 \pi}{\lambda}\left(n_{1} L_{1}-n_{2} L_{2}\right)$
(2) $\frac{2 \pi}{\lambda}\left(\frac{L_{2}}{n_{1}}-\frac{L_{1}}{n_{2}}\right)$
(3) $\frac{2 \pi}{\lambda}\left(\frac{L_{1}}{n_{1}}-\frac{L_{2}}{n_{2}}\right)$
(4) $\frac{2 \pi}{\lambda}\left(n_{2} L_{1}-n_{1} L_{2}\right)$
11. A beam of plane polarised light of large cross sectional area and uniform intensity of $3.3 \mathrm{Wm}^{-2}$ falls normally on a polariser (cross sectional area $3 \times 10^{-4} \mathrm{~m}^{2}$) which rotates about its axis with an angular speed of $31.4 \mathrm{rad} / \mathrm{s}$. The energy of light passing through the polariser per revolution, is close to :
(1) $1.0 \times 10^{-5} \mathrm{~J}$
(2) $5.0 \times 10^{-4} \mathrm{~J}$
(3) $1.0 \times 10^{-4} \mathrm{~J}$
(4) $1.5 \times 10^{-4} \mathrm{~J}$
12. Orange light of wavelength $6000 \times 10^{-10} \mathrm{~m}$ in illuminates a single slit of width $0.6 \times 10^{-4} \mathrm{~m}$. The maximum possible number of diffraction minima produced on both sides of the central maximum is \qquad ـ.
13. A beam of electrons of energy E scatters from a target having atomic spacing of $1 \AA$. The first maximum intensity occurs at $\theta=60^{\circ}$. Then E (in eV) is \qquad .
(Planck constant $\mathrm{h}=6.64 \times 10^{-34} \mathrm{Js}$, $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$, electron mass $\mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg}$)
14. In the figure below, P and Q are two equally intense coherent sources emitting radiation of wavelength 20 m . The separation between P and Q is 5 m and the phase of P is ahead of that of Q by 90°. A, B and C are three distinct points of observation, each equidistant from the midpoint of PQ . The intensities of radiation at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ will be in the ratio:

(1) $0: 1: 2$
(2) $4: 1: 0$
(3) $0: 1: 4$
(4) $2: 1: 0$
15. A Young's doublc-slit experiment is performed using monochromatic light of wavelength λ. The intensity of light at a point on the screen, where the path difference is λ, is K units. The intensity of light at a point where the path difference is $\mathrm{A} \frac{\lambda}{6}$ is given by $\frac{\mathrm{nK}}{12}$, where n is an integer. The value of n is \qquad .

SOLUTION

1. NTA Ans. (4)

Sol. $\quad \sin \theta=\frac{2 \lambda}{\omega}$

$$
\sin 60^{\circ}=\frac{2 \lambda}{\omega}
$$

$\sin \theta_{1}=\frac{\lambda}{\omega}=\frac{\sqrt{3}}{4}$

$$
\theta_{1}=25^{\circ}
$$

2. NTA Ans. (1)

Sol. $\frac{\mathrm{I}_{0}}{10}=\mathrm{I}=\frac{\mathrm{I}_{0}}{2} \times \cos ^{2} \theta$

$$
\cos \theta=\frac{1}{\sqrt{5}}
$$

$\theta=63.44^{\circ}$
angle rotated $=90-63.44^{\circ}=26.56^{\circ}$
Closest is 1 .
3. NTA Ans. (2)

Sol. Finge width, $\beta=\frac{\mathrm{D} \lambda}{\mathrm{d}}=\frac{1.5 \times 589 \times 10^{-9}}{0.15 \times 10^{-3}}$

$$
\begin{aligned}
& =5.9 \times 10^{-3} \mathrm{~m} \\
& =5.9 \mathrm{~mm}
\end{aligned}
$$

4. NTA Ans. (4)

Sol. $I=I_{0} \cos ^{2}\left(\frac{\Delta \phi}{2}\right)$

$$
\begin{aligned}
\frac{\mathrm{I}}{\mathrm{I}_{0}} & =\cos ^{2}\left(\frac{\Delta \phi}{2}\right) \\
\frac{\mathrm{I}}{\mathrm{I}_{0}} & =\cos ^{2}\left(\frac{2 \pi}{\lambda} \times \frac{\lambda}{8}\right) \\
\frac{\mathrm{I}}{\mathrm{I}_{0}} & =\cos ^{2}\left(\frac{\pi}{8}\right) \quad \Rightarrow \frac{\mathrm{I}}{\mathrm{I}_{0}}=0.853
\end{aligned}
$$

5. NTA Ans. (3)

Sol. Let distance is x then
$\mathrm{d} \theta=\frac{1.22 \lambda}{\mathrm{D}} \quad(\mathrm{D}=$ diameter $)$
$\frac{\mathrm{x}}{\mathrm{d}}=\frac{1.22 \lambda}{\mathrm{D}}(\mathrm{d}=$ distance between earth $\&$ moon $)$
$\mathrm{x}=\frac{1.22 \times\left(5500 \times 10^{-10}\right) \times\left(4 \times 10^{8}\right)}{5}=53.68 \mathrm{~m}$
most appropriate is 60 m .
6. NTA Ans. (1)

Sol. Direction of polarisation $=\hat{\mathrm{E}}=\hat{\mathrm{k}}$
Direction of propagation $=\hat{\mathrm{E}} \times \hat{\mathrm{B}}=\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}$
$\therefore \hat{\mathrm{E}} \times \hat{\mathrm{B}}=\frac{\hat{\mathrm{i}}+\hat{\mathrm{j}}}{\sqrt{2}}$
$\hat{B}=\frac{\hat{\mathrm{i}}-\hat{\mathrm{j}}}{\sqrt{2}}$
Correct answer (1)
7. Official Ans. by NTA (1)

Sol.

$$
\begin{aligned}
& \mathrm{y}=\frac{\mathrm{nD} \lambda}{\mathrm{~d}} \\
& \mathrm{n}=\frac{\mathrm{yd}}{\mathrm{D} \lambda}=\frac{1.27 \times 10^{-3} \times 10^{-3}}{1 \times 632.8 \times 10^{-9}}=2
\end{aligned}
$$

Path difference $\Delta \mathrm{x}=\mathrm{n} \lambda$

$$
\begin{aligned}
& =2 \times 632.8 \mathrm{~nm} \\
& =1265.6 \mathrm{~nm} \\
& =1.27 \mu \mathrm{~m}
\end{aligned}
$$

8. Official Ans. by NTA (1)

Sol. Let the length of segment is " ℓ "
Let N is the no. of fringes in " ℓ "
and w is fringe width.
\rightarrow We can write
$\mathrm{N} w=\ell$
$\mathrm{N}\left(\frac{\lambda \mathrm{D}}{\mathrm{d}}\right)=\ell$
$\frac{\mathrm{N}_{1} \lambda_{1} \mathrm{D}}{\mathrm{d}}=\ell$
$\frac{\mathrm{N}_{2} \lambda_{2} \mathrm{D}}{\mathrm{d}}=\ell$
$\mathrm{N}_{1} \lambda_{1}=\mathrm{N}_{2} \lambda_{2}$
$16 \times 700=\mathrm{N}_{2} \times 400$
$\mathrm{N}_{2}=28$
9. Official Ans. by NTA (4)

Sol. $\quad \Delta \theta_{0}=\left(\frac{\lambda}{\mathrm{d}} \times \frac{180}{\pi}\right)^{0}$

$$
=0.57^{\circ}
$$

10. Official Ans. by NTA (1)

Sol. $\Delta \mathrm{p}=\mathrm{n}_{1} \mathrm{~L}_{1}-\mathrm{n}_{2} \mathrm{~L}_{2}$
$\Delta \phi=\frac{2 \pi}{\lambda} \Delta \mathrm{p}$
11. Official Ans. by NTA (3)

Sol. Intensity, $\mathrm{I}=3.3 \mathrm{Wm}^{-2}$
Area, $A=3 \times 10-4 \mathrm{~m}^{2}$
Angular speed, $\omega=31.4 \mathrm{rad} / \mathrm{s}$
$\left.\because<\cos ^{2} \theta\right\rangle=\frac{1}{2}$, in one time period
\therefore Average energy $=\mathrm{I}_{0} \mathrm{~A} \times \frac{1}{2}$
$=\frac{(3.3)\left(3 \times 10^{-4}\right)}{2}$
$\simeq 5 \times 10^{-4} \mathrm{~J}$
12. Official Ans. by NTA (200)

Official Ans. by ALLEN (198)
Sol. Condition for minimum,
$\mathrm{d} \sin \theta=\mathrm{n} \lambda$
$\therefore \sin \theta=\frac{\mathrm{n} \lambda}{\mathrm{d}}<1$
$\mathrm{n}<\frac{\mathrm{d}}{\lambda}=\frac{6 \times 10^{-5}}{6 \times 10^{-7}}=100$
$\therefore \quad$ Total number of minima on one side

$$
=99
$$

Total number of minima $=198$
Correct Answer is 198
13. Official Ans. by NTA (50.00)

Sol.

$2 \mathrm{~d} \sin \theta=\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$
$2 \times 10^{-10} \times \frac{\sqrt{3}}{2}=\frac{6.6 \times 10^{-34}}{\sqrt{2 \mathrm{mE}}}$
$\mathrm{E}=\frac{1}{2} \times \frac{6.64^{2} \times 10^{-48}}{9.1 \times 10^{-31} \times 3 \times 1.6 \times 10^{-19}}=50.47$
14. Official Ans. by NTA (4)

Sol. For (A)

$x_{P}-x_{Q}=(d+2.5)-(d-2.5)$
$=5 \mathrm{~m}$
$\Delta \phi$ due to path difference $=\frac{2 \pi}{\lambda}(\Delta \mathrm{x})=\frac{2 \pi}{20}(5)$
$=\frac{\pi}{2}$
At A, Q is ahead of P by path, as wave emitted by Q reaches before wave emitted by P .
Total phase difference at A
$=\frac{\pi}{2}-\frac{\pi}{2}$ (due to P being ahead of Q by 90°)
$=0$
$\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{1}+\mathrm{I}_{2}+2 \sqrt{\mathrm{I}_{1}} \sqrt{\mathrm{I}_{2}} \cos \Delta \phi$
$=\mathrm{I}+\mathrm{I}+2 \sqrt{\mathrm{I}} \sqrt{\mathrm{I}} \cos (0)$
$=4 \mathrm{I}$
For C
$\mathrm{x}_{\mathrm{Q}}-\mathrm{x}_{\mathrm{P}}=5 \mathrm{~m}$
$\Delta \phi$ due to path difference $=\frac{2 \pi}{\lambda}(\Delta \mathrm{x})$
$=\frac{2 \pi}{20}(5)=\frac{\pi}{2}$
Total phase difference at $\mathrm{C}=\frac{\pi}{2}+\frac{\pi}{2}=\pi$
$\mathrm{I}_{\text {net }}=\mathrm{I}_{1}+\mathrm{I}_{2}+2 \sqrt{\mathrm{I}_{1}} \sqrt{\mathrm{I}_{2}} \cos (\Delta \phi)$
$=\mathrm{I}+\mathrm{I}+2 \sqrt{\mathrm{I}} \sqrt{\mathrm{I}} \cos (\pi)=0$
For B
$\mathrm{x}_{\mathrm{P}}-\mathrm{x}_{\mathrm{Q}}=0$,
$\Delta \phi=\frac{\pi}{2}$ (Due to P being ahead of Q by 90°)
$\mathrm{I}_{\mathrm{B}}=\mathrm{I}+\mathrm{I}+2 \sqrt{\mathrm{I}} \sqrt{\mathrm{I}} \cos \frac{\pi}{2}=2 \mathrm{I}$
$\mathrm{I}_{\mathrm{A}}: \mathrm{I}_{\mathrm{B}}: \mathrm{I}_{\mathrm{C}}=4 \mathrm{I}: 2 \mathrm{I}: 0$
$=2: 1: 0$
\therefore correct option is (4)
15. Official Ans. by NTA (9.00)

Sol. $I_{\text {max }}=k$
$\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{K} / 4$
$\Delta \mathrm{x}=\lambda / 6 \quad \Rightarrow \Delta \phi=\pi / 3$
$I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi$
$I=\frac{K}{4}+\frac{K}{4}+2 \times \frac{K}{4} \frac{1}{2}$
$=\frac{\mathrm{K}}{2}+\frac{\mathrm{K}}{4}=\frac{3 \mathrm{~K}}{4}=\frac{9 \mathrm{~K}}{12}$
$\mathrm{n}=9$

