CURRENT ELECTRICITY

1. The current I_1 (in A) flowing through 1 Ω resistor in the following circuit is:

- (1) 0.5
- (2) 0.2
- (3) 0.25
- (4) 0.4
- 2. In a building there are 15 bulbs of 45 W, 15 bulbs of 100 W, 15 small fans of 10 W and 2 heaters of 1 kW. The voltage of electric main is 220 V. The minimum fuse capacity (rated value) of the building will be:
 - (1) 10 A
- (2) 25 A
- (3) 15 A
- (4) 20 A
- **3.** The balancing length for a cell is 560 cm in a potentiometer experiment. When an external resistance of 10 Ω is connected in parallel to the cell, the balancing length changes by 60cm. If the internal resistance

of the cell is $\frac{N}{10}\Omega$, where N is an integer

then value of N is____

- 4. The length of a potentiometer wire is 1200 cm and it carries a current of 60 mA. For a cell of emf 5V and internal resistance of 20Ω , the null point on it is found to be a 1000cm. The resistance of whole wire is:
 - (1) 120Ω
- (2) 60Ω
- (3) 80Ω
- (4) 100Ω
- 5. Four resistances of 15Ω , 12Ω , 4Ω and 10Ω respectively in cyclic order to form Wheatstone's network. The resistance that is to be connected in parallel with the resistance of 10Ω to balance the network is ____ Ω.

- 6. A galvanometer having a coil resistance 100Ω gives a full scale deflection when a current of 1 mA is passed through it. What is the value of the resistance which can convert this galvanometer into a voltmeter giving full scale deflection for a potential difference of 10 V?
 - (1) 9.9 k Ω (2) 8.9 k Ω (3) 7.9 k Ω (4) 10 k Ω
- 7. The series combination of two batteries, both of the same emf 10 V, but different internal resistance of 20Ω and 5Ω , is connected to the parallel combination of two resistors 30 Ω and R Ω . The voltage difference across the battery of internal resistance 20Ω is zero, the value of R (in Ω) is:
- In the given circuit diagram, a wire is joining 8. points B and D. The current in this wire is:

- (1) 4A
- (2) 2A
- (3) 0.4A
- (4) Zero
- 9. In a meter bridge experiment S is a standard resistance. R is a resistance wire. It Is found that balancing length is l = 25 cm. If R is replaced by a wire of half length and half diameter that of R of same material, then the balancing distance l' (in cm) will now

- 10. Consider four conducting materials copper, tungsten, mercury and aluminium with resistivity $\rho_C > \rho_T > \rho_M$ and ρ_A respectively. Then:

 - (1) $\rho_A > \rho_T > \rho_C$ (2) $\rho_C > \rho_A > \rho_T$
 - $(3) \rho_{A} > \rho_{M} > \rho_{C}$
- $(4) \rho_{\rm M} > \rho_{\rm A} > \rho_{\rm C}$

11. Model a torch battery of length l to be made up of a thin cylindrical bar of radius 'a' and a concentric thin cylindrical shell of radius 'b' filled in between with an electrolyte of resistivity p (see figure). If the battery is connected to a resistance of value R, the maximum Joule heating in R will take place for:-

- (1) $R = \frac{2\rho}{\pi l} l n \left(\frac{b}{a}\right)$ (2) $R = \frac{\rho}{\pi l} l n \left(\frac{b}{a}\right)$
- (3) $R = \frac{\rho}{2\pi l} \left(\frac{b}{a} \right)$ (4) $R = \frac{\rho}{2\pi l} ln \left(\frac{b}{a} \right)$
- **12.** A battery of 3.0 V is connected to a resistor dissipating 0.5 W of power. If the terminal voltage of the battery is 2.5 V, the power dissipated within the internal resistance is:
 - (1) 0.50 W
- (2) 0.125 W
- (3) 0.072 W
- (4) 0.10 W
- **13.** The value of current i_1 flowing from A to C in the circuit diagram is:

- (1) 5A
- (2) 2A
- (3) 4A
- (4) 1A

Four resistances 40Ω , 60Ω , 90Ω and 110Ω make the arms of a quadrilateral ABCD. Across AC is a battery of emf 40V and internal resistance negligible. The potential difference across BD is V is

- **15.** An electrical power line, having a total resistance of 2Ω , delivers 1 kW at 220 V. The efficiency of the transmission line is approximately:
 - (1) 72%
- (2) 96%
- (3) 91%
- (4) 85%
- 16. A galvanometer of resistance G is converted into a voltmeter of range 0 - 1V by connecting a resistance R₁ in series with it. The additional resistance that should be connected in series with R₁ to increase the range of the voltmeter to 0 - 2V will be:
 - $(1) R_1$
- (2) $R_1 + G$ (4) G
- $(3) R_1 G$
- **17.** In the circuit, given in the figure currents in different branches and value of one resistor are shown. Then potential at point B with respect to the point A is:

- (1) + 1V
 - (2) 1V
- (3) 2V
- (4) + 2V
- **18.** A galvanometer is used in laboratory for detecting the null point in electrical experiments. If, on passing a current of 6mA it produces a deflection of 2°, its figure of merit is close to:
 - (1) 3×10^{-3} A/div.
- (2) 333° A/div.
- (3) 6×10^{-3} A/div.
- (4) 666° A/div.

- 19. A circuit to verify Ohm's law uses ammeter and voltmeter in series or parallel connected correctly to the resistor. In the circuit:
 - (1) ammeter is always connected series and voltmeter in parallel.
 - (2) Both, ammeter and voltmeter mast be connected in series.
 - (3) Both ammeter and voltmeter must be connected in parallel.
 - (4) ammeter is always used in parallel and voltmeter is series.
- 20. In the figure shown, the current in the 10 V battery is close to:

- (1) 0.36 A from negative to positive terminal.
- (2) 0.71 A from positive to negative terminal.
- (3) 0.21 A from positive to negative terminal.
- (4) 0.42 A from positive to negative terminal.

21. A potentiometer wire PQ of 1 m length is connected to a standard cell E1. Another cell E, of emf 1.02 V is connected with a resistance 'r' and switch S (as shown in figure). With switch S open, the null position is obtained at a distance of 49 cm from Q. The potential gradient in the potentiometer wire is:

- (1) 0.02 V/cm
- (2) 0.04 V/cm
- (3) 0.01 V/cm
- (4) 0.03 V/cm

ALLEN

SOLUTION

1. NTA Ans. (2)

Sol. Equivalent resistance of upper branch of circuit $R = 2.5 \Omega$

Voltage across upper branch = 1 V

$$\Rightarrow i = \frac{1}{2.5} = .4 \text{ A}$$

$$\Rightarrow I_1 = 0.2 A$$

2. NTA Ans. (4)

Sol. $220 \text{ I} = P = 15 \times 45 + 15 \times 100 + 15 \times 10 + 2 \times 10^3$

$$I = \frac{4325}{220} = 19.66$$

$$I \simeq 20 A$$

3. NTA Ans. (12)

Sol.
$$r = R\left(\frac{x - x'}{x'}\right)$$

$$= 10 \times \frac{60}{500} = 12$$

4. NTA Ans. (4)

Sol.
$$5 = \lambda \ell$$

where λ is potential gradient & L is total length of wire

$$5 = \frac{\Delta V}{L} \ell$$

$$\Delta V = \frac{5 \times L}{\ell} = 5 \times \frac{12}{10} = 6V = 60 \text{ mA} \times R$$

$$R = 100\Omega$$

5. NTA Ans. (10.00)

Let the resistance to be connected is R. For balanced wheatstone bridge,

$$15 \times 4 = 12 \times \frac{10R}{10 + R}$$

$$\Rightarrow$$
 R = 10 Ω

6. NTA Ans. (1)

Sol.
$$i_g = 1 \text{ mA}$$
, $R_g = 100 \Omega$

$$V = i_g(R + R_g)$$

$$10 = 1 \times 10^{-5} (R + 100)$$

$$R = 9.9 \text{ k}\Omega$$

7. NTA Ans. (30)

$$E_1 = E - ir$$

= 10 - i20 = 0

$$E_2 = E - ir$$

= 10 - 0.5 × 5
= 7.5 V

$$E_{net} = E_1 + E_2 = 7.5 \text{ V}$$

 $i = i_1 + i_2$

$$0.5 = \frac{7.5}{x} + \frac{7.5}{30} \qquad x = 30 \ \Omega$$

8. NTA Ans. (2)

i = 0.5 A

NTA Ans. (40.00)

Sol. In balancing

$$\frac{R}{S} = \frac{25}{75}$$

New resistance R' =
$$\frac{\rho \ell}{A}$$

$$=\frac{\rho \times \frac{\ell}{2}}{\frac{A}{4}} = \frac{\rho \ell}{2} \times 4A$$

$$R' = 2R$$

$$\frac{2R}{S} = \frac{\ell'}{100 - \ell'}$$

$$2 \times \frac{1}{3} = \frac{\ell'}{100 - \ell'} = 3\ell' = 200 - 2\ell'$$

$$5\ell' = 200$$

$$\ell' = 40$$

:. Correct answer 40

10. Official Ans. by NTA (4)

$$\textbf{Sol.} \quad \rho_{\scriptscriptstyle M} > \rho_{\scriptscriptstyle A} > \rho_{\scriptscriptstyle C}$$

11. Official Ans. by NTA (4)

Maximum power in external resistance is Sol. generated when it is equal to internal resistance of battery.

 P_R is max. when r = R

$$\int dr = \int_{a}^{b} \frac{\rho dr}{2\pi r l} \implies r = \frac{\rho}{2\pi l} l n \frac{b}{a}$$

12. Official Ans. by NTA (4)

 $P_R = 0.5W$

$$\Rightarrow$$
 i²R = 0.5W

Also,
$$V = E - ir$$

$$2.5 = 3 - ir$$

$$\Rightarrow$$
 ir = 0.5

Power dissipated across 'r': $P_r = i^2 r$

Now
$$iR = 2.5$$

$$ir = 0.5$$

On dividing: $\frac{R}{r} = 5$

Now
$$\frac{P_R}{P_r} = \frac{i^2 R}{i^2 r} \Rightarrow \frac{P_R}{P_r} = \frac{R}{r} \Rightarrow \frac{P_R}{P_r} = 5$$

$$\Rightarrow P_r = \frac{P_R}{5}$$

$$\Rightarrow P_r = \frac{0.50}{5} \Rightarrow P_r = 0.10 \text{ W}$$

option (4) is correct.

13. Official Ans. by NTA (4)

Sol. Voltage across
$$AC = 8V$$

 $R_{AC} = 4 + 4 = 8\Omega$

$$i_1 = \frac{V}{R_{AC}} = \frac{8}{8} = 1 A$$

14. Official Ans. by NTA (2)

$$i_1 = \frac{40}{40 + 60} = 0.4$$

$$i_2 = \frac{40}{90 + 110} = \frac{1}{5}$$

 $v_B + i_1 (40) - i_2 (90) = v_D$

$$v_{_{\rm B}} - v_{_{\rm D}} = \frac{1}{5} (90) - \frac{4}{10} \times 40$$

$$v_B - v_D = 18 - 16 = 2$$

15. Official Ans. by NTA (2)

Sol. vi =
$$10^3$$

$$i = \frac{1000}{220}$$

$$loss = i^2 R = \left(\frac{50}{11}\right)^2 \times 2$$

efficiency =
$$\frac{1000}{1000 + i^2 R} \times 100 = 96\%$$

16. Official Ans. by NTA (2)

Sol.
$$\overrightarrow{i_g}$$
 \overrightarrow{G} \overrightarrow{WW}

$$\Rightarrow 1 = i_g(G + R_1) \dots (1)$$

$$R_1 \qquad R_2$$

$$\Rightarrow 2 = i_{g}(R_1 + R_2 + G) \dots (2)$$

$$\Rightarrow \frac{1}{2} = \frac{G + R_1}{G + R_1 + R_2}$$

$$G + R_1 + R_2 = 2G + 2h_1$$

$$(R_2 = G + R_1)$$

17. Official Ans. by NTA (1)

Let us asssume the potential at $A = V_A = 0$ Now at junction C, According to KCL

$$\mathbf{i}_1 + \mathbf{i}_3 = \mathbf{i}_2$$

$$1A + i_3 = 2A$$

$$i_3 = 2A$$

Sol.

Now Analyse potential along ACDB

$$v_A + 1 + i_3(2) - 2 = v_B$$

$$0 + 1 + 2(1) - 2 = v_{R}$$

$$v_B = 3 - 2$$

$$v_{R} = 1 \text{ Amp}$$

18. Official Ans. by NTA (1)

Sol. Figure of Merit =
$$C = \frac{i}{A}$$

$$= C = \frac{6 \times 10^{-3}}{2} = 3 \times 10^{-3} \text{ Am}^2$$

19. Official Ans. by NTA (1)

Sol. Conceptual

Option (1) is correct

Ammeter: In series connection, the same current flows through all the components. It aims at measuring the curent flowing through the circuit and hence, it is connected in series. Voltmeter: A voltmeter measures voltage change between two points in a circuit, So we have to place the voltmeter in parallal with the circuit component.

20. Official Ans. by NTA (3)

Sol.
$$E_{eq} = \frac{20 \times 10}{17} = \frac{200}{17}$$

and
$$R_{eq} = \frac{7 \times 10}{17} = \frac{70}{17}$$

21. Official Ans. by NTA (1)

Sol. Balancing length is measured from P.

So
$$100 - 49 = 51$$
 cm

$$E_2 = \phi \times 51$$

Where ϕ = Potential gradient

$$1.02 = \phi \times 51$$

$$\phi = 0.02 \text{ V/cm}$$

$$\therefore I = \frac{\frac{20}{17} - 10}{4 + \frac{70}{17}} = 0.21 \text{ A}$$

from +ve to -ve terminal