BASIC MATHS \& VECTOR

1. The sum of two forces $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ is $\overrightarrow{\mathrm{R}}$ such that $|\overrightarrow{\mathrm{R}}|=|\overrightarrow{\mathrm{P}}|$. The angle θ (in degrees) that the resultant of $2 \overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ will make with $\overrightarrow{\mathrm{Q}}$ is, \qquad .
2. A balloon is moving up in air vertically above a point A on the ground. When it is at a height h_{1}, a girl standing at a distance d (point B) from A (see figure) sees it at an angle 45° with respect to the vertical. When the balloon climbs up a further height h_{2}, it is seen at an angle 60° with respect to the vertical if the girl moves further by a distance 2.464 d (point C). Then the height h_{2} is (given $\left.\tan 30^{\circ}=0.5774\right)$:

(1) d
(2) 0.732 d
(3) 1.464 d
(4) 0.464 d

SOLUTION

1. NTA Ans. (90)

Sol.

Hence angle 90°
2. Official Ans. by NTA (1)

Sol.

$\frac{\mathrm{h}_{1}}{\mathrm{~d}}=\tan 45^{\circ} \Rightarrow \mathrm{h}_{1}=\mathrm{d}$.
$\frac{\mathrm{h}_{1}+\mathrm{h}_{2}}{\mathrm{~d}+2.464 \mathrm{~d}}=\tan 30^{\circ}$
$\Rightarrow\left(\mathrm{h}_{1}+\mathrm{h}_{2}\right) \times \sqrt{3}=3.46 \mathrm{~d}$
$\left(h_{1}+h_{2}\right)=\frac{3.46 d}{\sqrt{3}}$
$\Rightarrow d+h_{2}=\frac{3.46 \mathrm{~d}}{\sqrt{3}}$
$h_{2}=\mathrm{d}$

