TANGENT \& NORMAL

1. The length of the perpendicular from the origin, on the normal to the curve, $x^{2}+2 x y-3 y^{2}=0$ at the point $(2,2)$ is
(1) $4 \sqrt{2}$
(2) $2 \sqrt{2}$
(3) 2
(4) $\sqrt{2}$
2. Let the normal at a point P on the curve $y^{2}-3 x^{2}+y+10=0$ intersect the y-axis at $\left(0, \frac{3}{2}\right)$. If m is the slope of the tangent at P to the curve, then ml is equal to
3. If the tangent to the curve $y=x+\sin y$ at a point (a, b) is parallel to the line joining $\left(0, \frac{3}{2}\right)$ and $\left(\frac{1}{2}, 2\right)$, then :
(1) $b=a$
(2) $b=\frac{\pi}{2}+a$
(3) $\mathrm{lb}-\mathrm{al}=1$
(4) $|\mathrm{a}+\mathrm{b}|=1$
4. The equation of the normal to the curve $y=(1+x)^{2 y}+\cos ^{2}\left(\sin ^{-1} x\right)$ at $x=0$ is :
(1) $y=4 x+2$
(2) $x+4 y=8$
(3) $y+4 x=2$
(4) $2 y+x=4$
5. If the surface area of a cube is increasing at a rate of $3.6 \mathrm{~cm}^{2} / \mathrm{sec}$, retaining its shape; then the rate of change of its volume ($\mathrm{in} \mathrm{cm}^{3} / \mathrm{sec}$), when the length of a side of the cube is 10 cm , is :
(1) 9
(2) 18
(3) 10
(4) 20
6. If the tangent of the curve, $y=e^{x}$ at a point (c, e^{c}) and the normal to the parabola, $\mathrm{y}^{2}=4 \mathrm{x}$ at the point $(1,2)$ intersect at the same point on the x-axis, then the value of c is \qquad _.
7. If the lines $x+y=a$ and $x-y=b$ touch the curve $y=x^{2}-3 x+2$ at the points where the curve intersects the x-axis, then $\frac{a}{b}$ is equal to \qquad .
8. The position of a moving car at time t is given by $f(\mathrm{t})=\mathrm{at}{ }^{2}+\mathrm{bt}+\mathrm{c}, \mathrm{t}>0$, where a, b and c are real numbers greater than 1 . Then the average speed of the car over the time interval $\left[t_{1}, t_{2}\right]$ is attained at the point :
(1) $a\left(t_{2}-t_{1}\right)+b$
(2) $\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) / 2$
(3) $2 a\left(t_{1}+t_{2}\right)+b$
(4) $\left(t_{1}+t_{2}\right) / 2$

SOLUTION

1. NTA Ans. (2)

Sol. $x^{2}+2 x y-3 y^{2}=0$
$\mathrm{m}_{\mathrm{N}}=$ slope of normal drawn to curve at $(2,2)$ is -1
$L: x+y=4$.
perpendicular distance of L from $(0,0)$
$=\frac{|0+0-4|}{\sqrt{2}}=2 \sqrt{2}$
(2) Option
2. NTA Ans. (4.00)

Sol. Let $\mathrm{P}(\alpha, \beta)$
so, $\beta^{2}-3 \alpha^{2}+\beta+10=0$

Now, $2 \mathrm{yy} y^{\prime}-6 \mathrm{x}+\mathrm{y}^{\prime}=0$
$\Rightarrow \mathrm{m}=\frac{6 \alpha}{2 \beta+1}$

Also, $\frac{\beta-\frac{3}{2}}{\alpha}=-\frac{1}{m}$
$\Rightarrow \frac{2 \beta-3}{2 \alpha}=-\frac{(2 \beta+1)}{6 \alpha}($ from (ii))
$\Rightarrow \beta=1 \Rightarrow \alpha^{2}=4$ (from (1))

Hence, $\left\lvert\, \mathrm{ml}=\frac{12}{3}=4.00\right.$

3. Official Ans. by NTA (3)

Sol. Slope of tangent to the curve $y=x+\sin y$
at (a, b) is $\frac{2-\frac{3}{2}}{\frac{1}{2}-0}=1$
$\left.\Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\mathrm{x}=\mathrm{a}}=1$
$\frac{d y}{d x}=1+\cos y \cdot \frac{d y}{d x}$ (from equation of curve)
$\left.\left.\frac{d y}{d x}\right]_{x=a}=1+\cos b \cdot \frac{d y}{d x}\right]_{x=a}$
$\Rightarrow \quad \cos \mathrm{b}=0$
$\Rightarrow \quad \sin \mathrm{b}= \pm 1$
Now, from curve $y=x+\sin y$
$\mathrm{b}=\mathrm{a}+\sin \mathrm{b}$
$\Rightarrow \quad|\mathrm{b}-\mathrm{a}|=|\sin \mathrm{b}|=1$
4. Official Ans. by NTA (2)

Sol. Given equation of curve
$y=(1+x)^{2 y}+\cos ^{2}\left(\sin ^{-1} x\right)$
at $\mathrm{x}=0$
$y=(1+0)^{2 y}+\cos ^{2}\left(\sin ^{-1} 0\right)$
$y=1+1$
$\mathrm{y}=2$
So we have to find the normal at $(0,2)$
Now $y=e^{2 y \ln (1+x)}+\cos ^{2}\left(\cos ^{-1} \sqrt{1-\mathrm{x}^{2}}\right)$
$y=e^{2 y \ln (1+x)}+\left(\sqrt{1-x^{2}}\right)^{2}$
$y=e^{2 y \ln (1+x)}+\left(1-x^{2}\right)$
Now differentiate w.r.t. x
$y^{\prime}=e^{2 y \ln (1+x)}\left[2 y \cdot\left(\frac{1}{1+x}\right)+\ln (1+x) .2 y^{\prime}\right]-2 x$
Put $x=0 \& y=2$
$y^{\prime}=e^{2 \times 2 \ln 1}\left[2 \times 2\left(\frac{1}{1+0}\right)+\ln (1+0) \cdot 2 y^{\prime}\right]-2 \times 0$
$y^{\prime}=e^{0}[4+0]-0$
$y^{\prime}=4=$ slope of tangent to the curve
so slope of normal to the curve $=-\frac{1}{4}\left\{\mathrm{~m}_{1} \mathrm{~m}_{2}=-1\right\}$
Hence equation of normal at $(0,2)$ is
$y-2=-\frac{1}{4}(x-0)$
$\Rightarrow 4 \mathrm{y}-8=-\mathrm{x}$
$\Rightarrow x+4 y=8$
5. Official Ans. by NTA (1)

Sol. $\frac{\mathrm{d}}{\mathrm{dt}}\left(6 \mathrm{a}^{2}\right)=3.6 \Rightarrow 12 \mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}=3.6$
$\mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}=0.3$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{a}^{3}\right)=3 \mathrm{a}\left(\mathrm{a} \frac{\mathrm{da}}{\mathrm{dt}}\right)$
$=3 \times 10 \times 0.3=9$
6. Official Ans. by NTA (4)

Sol. $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{e}^{\mathrm{x}}$
$\mathrm{m}=\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\left(\mathrm{c}, \mathrm{e}^{\mathrm{c}}\right)}=\mathrm{e}^{\mathrm{c}}$
\Rightarrow Tangent at (c, e^{c})
$y-e^{c}=e^{c}(x-c)$
it intersect x -axis
Put $\mathrm{y}=0 \Rightarrow \mathrm{x}=\mathrm{c}-1$
......(1)

Now $y^{2}=4 x \Rightarrow \frac{d y}{d x}=\frac{2}{y} \Rightarrow\left(\frac{d y}{d x}\right)_{(1,2)}=1$
\Rightarrow Slope of normal $=-1$
Equation of normal $y-2=-1(x-1)$
$x+y=3$ it intersect x-axis
Put $y=0 \Rightarrow x=3$
......(2)
Points are same
$\Rightarrow \mathrm{x}=\mathrm{c}-1=3$
$\Rightarrow \mathrm{c}=4$
7. Official Ans. by NTA (0.50)

Sol. $y=x^{2}-3 x+2$
At x -axis $\mathrm{y}=0=\mathrm{x}^{2}-3 \mathrm{x}+2$
$\mathrm{x}=1,2$
$\frac{d y}{d x}=2 x-3$
$\mathrm{A}(1,0) \mathrm{B}(2,0)$
$\left(\frac{d y}{d x}\right)_{x=1}=-1$ and $\left(\frac{d y}{d x}\right)_{x=2}=1$
$\# x+y=a \Rightarrow \frac{d y}{d x}=-1$ So $A(1,0)$ lies on it
$\Rightarrow 1+0=\mathrm{a} \Rightarrow \mathrm{a}=1$
$\# \mathrm{x}-\mathrm{y}=\mathrm{b} \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=1$ So $\mathrm{B}(2,0)$ lies on it
$2-0=b \Rightarrow b=2$
$\frac{\mathrm{a}}{\mathrm{b}}=0.50$
8. Official Ans. by NTA (4)

Sol. $\frac{f\left(\mathrm{t}_{2}\right)-f\left(\mathrm{t}_{1}\right)}{\mathrm{t}_{2}-\mathrm{t}_{1}}=2 \mathrm{at}+\mathrm{b}$
$\frac{a\left(t_{2}^{2}-t_{1}^{2}\right)+b\left(t_{2}-t_{1}\right)}{t_{2}-t_{1}}=2 a t+b$
$\Rightarrow \mathrm{a}\left(\mathrm{t}_{2}+\mathrm{t}_{1}\right)+\mathrm{b}=2 \mathrm{at}+\mathrm{b}$
$\Rightarrow \mathrm{t}=\frac{\mathrm{t}_{1}+\mathrm{t}_{2}}{2}$

