TANGENT & NORMAL

- The length of the perpendicular from the origin, 1. on the normal to the curve, $x^2 + 2xy - 3y^2 = 0$ at the point (2,2) is
 - (1) $4\sqrt{2}$
- (2) $2\sqrt{2}$

(3) 2

- $(4) \sqrt{2}$
- 2. Let the normal at a point P on the curve $y^2 - 3x^2 + y + 10 = 0$ intersect the y-axis at $\left(0,\frac{3}{2}\right)$. If m is the slope of the tangent at P to

the curve, then lml is equal to

- If the tangent to the curve $y = x + \sin y$ at a **3.** point (a, b) is parallel to the line joining $\left(0,\frac{3}{2}\right)$ and $\left(\frac{1}{2},2\right)$, then:
 - (1) b = a
- (2) $b = \frac{\pi}{2} + a$
- (3) |b a| = 1
- (4) |a+b| = 1
- 4. The equation of the normal to the curve $y = (1+x)^{2y} + \cos^2(\sin^{-1}x)$ at x = 0 is :
 - (1) y = 4x + 2
- (2) x + 4y = 8
- (3) y + 4x = 2
- (4) 2y + x = 4

- 5. If the surface area of a cube is increasing at a rate of 3.6 cm²/sec, retaining its shape; then the rate of change of its volume (in cm³/sec), when the length of a side of the cube is 10 cm, is:
 - (1)9

- (2) 18
- (3) 10
- (4) 20
- 6. If the tangent of the curve, $y = e^x$ at a point (c, e^c) and the normal to the parabola, $y^2 = 4x$ at the point (1, 2) intersect at the same point on the x-axis, then the value of c is .
- 7. If the lines x + y = a and x - y = b touch the curve $y = x^2 - 3x + 2$ at the points where the curve intersects the x-axis, then $\frac{a}{b}$ is equal
- 8. The position of a moving car at time t is given by $f(t) = at^2 + bt + c$, t > 0, where a, b and c are real numbers greater than 1. Then the average speed of the car over the time interval $[t_1,t_2]$ is attained at the point:
 - (1) $a(t_2 t_1) + b$
- $(2) (t_2 t_1)/2$
- (3) $2a(t_1 + t_2) + b$ (4) $(t_1 + t_2)/2$

SOLUTION

1. NTA Ans. (2)

Sol.
$$x^2 + 2xy - 3y^2 = 0$$

 m_N = slope of normal drawn to curve at (2,2) is -1

$$L: x + y = 4.$$

perpendicular distance of L from (0,0)

$$= \frac{\left| 0 + 0 - 4 \right|}{\sqrt{2}} = 2\sqrt{2}$$

(2) Option

2. NTA Ans. (4.00)

Sol. Let $P(\alpha,\beta)$

so,
$$\beta^2 - 3\alpha^2 + \beta + 10 = 0$$
 ...(i)

Now,
$$2yy' - 6x + y' = 0$$

$$\Rightarrow$$
 m = $\frac{6\alpha}{2\beta+1}$ (ii)

Also,
$$\frac{\beta - \frac{3}{2}}{\alpha} = -\frac{1}{m}$$

$$\Rightarrow \frac{2\beta - 3}{2\alpha} = -\frac{(2\beta + 1)}{6\alpha} \text{ (from (ii))}$$

$$\Rightarrow \beta = 1 \Rightarrow \alpha^2 = 4 \text{ (from (1))}$$

Hence,
$$|m| = \frac{12}{3} = 4.00$$

3. Official Ans. by NTA (3)

Sol. Slope of tangent to the curve $y = x + \sin y$

at (a, b) is
$$\frac{2-\frac{3}{2}}{\frac{1}{2}-0} = 1$$

$$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x}\bigg]_{x=a} = 1$$

$$\frac{dy}{dx} = 1 + \cos y. \frac{dy}{dx}$$
 (from equation of curve)

$$\left. \frac{dy}{dx} \right|_{x=a} = 1 + \cos b \cdot \frac{dy}{dx} \right|_{x=a}$$

$$\Rightarrow \cos b = 0$$

$$\Rightarrow$$
 sin b = ±1

Now, from curve $y = x + \sin y$

$$b = a + \sin b$$

$$\Rightarrow$$
 $|b - a| = |\sin b| = 1$

4. Official Ans. by NTA (2)

Sol. Given equation of curve

$$y = (1 + x)^{2y} + \cos^2(\sin^{-1}x)$$

at
$$x = 0$$

$$y = (1 + 0)^{2y} + \cos^2(\sin^{-1}0)$$

$$y = 1 + 1$$

$$y = 2$$

So we have to find the normal at (0, 2)

Now
$$y = e^{2y \ln(1+x)} + \cos^2(\cos^{-1}\sqrt{1-x^2})$$

$$y = e^{2y \ln(1+x)} + \left(\sqrt{1-x^2}\right)^2$$

Now differentiate w.r.t. x

$$y' = e^{2y \ln(1+x)} \left[2y \cdot \left(\frac{1}{1+x} \right) + \ln(1+x) \cdot 2y' \right] - 2x$$

Put x = 0 & y = 2

$$y' = e^{2 \times 2l \ln 1} \left[2 \times 2 \left(\frac{1}{1+0} \right) + \ln(1+0) \cdot 2y' \right] - 2 \times 0$$

$$y' = e^0[4 + 0] - 0$$

y' = 4 = slope of tangent to the curve

so slope of normal to the curve = $-\frac{1}{4} \{m_1 m_2 = -1\}$

Hence equation of normal at (0, 2) is

$$y - 2 = -\frac{1}{4}(x - 0)$$

$$\Rightarrow$$
 4y - 8 = -x

$$\Rightarrow \boxed{x + 4y = 8}$$

5. Official Ans. by NTA (1)

Sol.
$$\frac{d}{dt}(6a^2) = 3.6 \Rightarrow 12a \frac{da}{dt} = 3.6$$

$$a \frac{da}{dt} = 0.3$$

$$\frac{dv}{dt} = \frac{d}{dt}(a^3) = 3a\left(a\frac{da}{dt}\right)$$

$$= 3 \times 10 \times 0.3 = 9$$

6. Official Ans. by NTA (4)

Sol.
$$y = e^x \Rightarrow \frac{dy}{dx} = e^x$$

$$m = \left(\frac{dy}{dx}\right)_{(c,e^c)} = e^c$$

 \Rightarrow Tangent at (c, e^c)

$$y - e^c = e^c (x - c)$$

it intersect x-axis

Put
$$y = 0 \Rightarrow x = c - 1$$

Now
$$y^2 = 4x \implies \frac{dy}{dx} = \frac{2}{y} \implies \left(\frac{dy}{dx}\right)_{(1, 2)} = 1$$

 \Rightarrow Slope of normal = -1

Equation of normal y - 2 = -1(x - 1)

x + y = 3 it intersect x-axis

Put
$$y = 0 \Rightarrow x = 3$$

Points are same

$$\Rightarrow$$
 x = c - 1 = 3

$$\Rightarrow$$
 c = 4

7. Official Ans. by NTA (0.50)

Sol.
$$y = x^2 - 3x + 2$$

At x-axis
$$y = 0 = x^2 - 3x + 2$$

$$x = 1, 2$$

$$\frac{dy}{dx} = 2x - 3$$

$$\left(\frac{dy}{dx}\right)_{x=1} = -1$$
 and $\left(\frac{dy}{dx}\right)_{x=2} = 1$

$$\# x + y = a \Rightarrow \frac{dy}{dx} = -1$$
 So A(1, 0) lies on it

$$\Rightarrow 1 + 0 = a \Rightarrow \boxed{a=1}$$

$$\# x - y = b \Rightarrow \frac{dy}{dx} = 1$$
 So B(2, 0) lies on it

$$2 - 0 = b \Rightarrow \boxed{b = 2}$$

$$\frac{a}{b} = 0.50$$

8. Official Ans. by NTA (4)

Sol.
$$\frac{f(t_2) - f(t_1)}{t_2 - t_1} = 2at + b$$

$$\frac{a(t_2^2 - t_1^2) + b(t_2 - t_1)}{t_2 - t_1} = 2at + b$$

$$\Rightarrow$$
 a(t₂ + t₁) + b = 2at + b

$$\Rightarrow t = \frac{t_1 + t_2}{2}$$