SET

- Let X = {n ∈ N : 1 ≤ n ≤ 50}. If A = {n ∈ X : n is a multiple of 2} and B = {n ∈ X : n is a multiple of 7}, then the number of elements in the smallest subset of X containing both A and B is_____
- **2.** Consider the two sets :

 $A = \{m \in R : \text{both the roots of } x^2 - (m+1)x + m + 4 = 0 \text{ are real} \} \text{ and } B = [-3, 5).$

Which of the following is not true?

- (1) A B = $(-\infty, -3) \cup (5, \infty)$
- (2) $A \cap B = \{-3\}$
- (3) B A = (-3, 5)
- (4) $A \cup B = R$
- 3. Let S be the set of all integer solutions, (x, y, z), of the system of equations

$$x - 2y + 5z = 0$$

$$-2x + 4y + z = 0$$

$$-7x + 14y + 9z = 0$$

such that $15 \le x^2 + y^2 + z^2 \le 150$. Then, the number of elements in the set S is equal to

- 4. A survey shows that 63% of the people in a city read newspaper A whereas 76% read newspaper B. If x% of the people read both the newspapers, then a possible value of x can be:
 - (1)65
- (2)37

(3)29

- (4)55
- 5. Let $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$, where each X_i contains 10 elements and each Y_i contains 5 elements. If each element of the set T is an element of exactly 20 of sets X_i 's and exactly 6 of sets Y_i 's, then n is equal to:
 - (1)45
- (2) 15
- (3) 50
- (4) 30
- 6. A survey shows that 73% of the persons working in an office like coffee, whereas 65% like tea. If x denotes the percentage of them, who like both coffee and tea, then x cannot be:
 - (1)63
- (2)38

- (3)54
- (4)36
- 7. Set A has m elements and Set B has n elements. If the total number of subsets of A is 112 more than the total number of subsets of B, then the value of m.n is _.

SOLUTION

1. NTA Ans. (29.00)

Sol.
$$n(A) = 25$$

$$n(B) = 7$$

$$n(A \cap B) = 3$$

$$n(A \cup B) = 25 + 7 - 3 = 29$$

2. Official Ans. by NTA (1)

Sol.
$$A: D \ge 0$$

$$\Rightarrow$$
 $(m + 1)^2 - 4(m + 4) \ge 0$

$$\Rightarrow$$
 m² + 2m + 1 - 4m - 16 \geq 0

$$\Rightarrow$$
 m² - 2m - 15 \geq 0

$$\Rightarrow$$
 (m – 5) (m + 3) \geq 0

$$\Rightarrow$$
 m \in ($-\infty$, -3] \cup [5, ∞)

$$\therefore$$
 A = $(-\infty, -3] \cup [5, \infty)$

$$B = [-3, 5)$$

$$A - B = (-\infty, -3) \cup [5, \infty)$$

$$A \cap B = \{-3\}$$

$$B - A = (-3, 5)$$

$$A \cup B = R$$

3. Official Ans. by NTA (8)

Sol.
$$\Delta = \begin{vmatrix} 1 & -2 & 5 \\ -2 & 4 & 1 \\ -7 & 14 & 9 \end{vmatrix} = 0$$

Let
$$x = k$$

$$\Rightarrow$$
 Put in (1) & (2)

$$k - 2y + 5z = 0$$

$$-2k + 4y + z = 0$$

$$z = 0, y = \frac{k}{2}$$

∴ x, y, z are integer

 \Rightarrow k is even integer

Now x = k, $y = \frac{k}{2}$, z = 0 put in condition

$$15 \le k^2 + \left(\frac{k}{2}\right)^2 + 0 \le 150$$

$$12 \le k^2 \le 120$$

$$\Rightarrow$$
 k = ±4, ±6, ±8, ±10

 \Rightarrow Number of element in S = 8.

4. Official Ans. by NTA (4)

Sol.
$$n(B) \le n(A \cup B) \le n(U)$$

$$\Rightarrow$$
 76 \leq 76 + 63 - x \leq 100

$$\Rightarrow$$
 $-63 \le -x \le -39$

$$\Rightarrow$$
 63 \geq x \geq 39

5. Official Ans. by NTA (4)

Sol.
$$n(X_i) = 10$$
. $\bigcup_{i=1}^{50} X_i = T, \Rightarrow n(T) = 500$

each element of T belongs to exactly 20

elements of $X_i \Rightarrow \frac{500}{20} = 25$ distinct elements

so
$$\frac{5n}{6} = 25 \Rightarrow n = 30$$

6. Official Ans. by NTA (4)

Sol. $C \rightarrow person like coffee$

 $T \rightarrow person like Tea$

$$n(C) = 73$$

$$n(T) = 65$$

$$n(C \cup T) \le 100$$

$$n(C) + n(T) - n (C \cap T) \le 100$$

$$73 + 65 - x \le 100$$

$$x \ge 38$$

$$73 - x \ge 0 \Rightarrow x \le 73$$

$$65 - x \ge 0 \Rightarrow x \le 65$$

$$38 \le x \le 65$$

7. Official Ans. by NTA (28.00)

Sol.
$$2^m - 2^n = 112$$

$$m = 7, n = 4$$

$$(2^7 - 2^4 = 112)$$

$$m \times n = 7 \times 4 = 28$$