MAXIMA & MINIMA

- 1. Let f(x) be a polynomial of degree 5 such that $x = \pm 1$ are its critical points. If $\lim_{x\to 0} \left(2 + \frac{f(x)}{x^3}\right) = 4$, then which one of the following is not true?
 - (1) f is an odd function
 - (2) x = 1 is a point of minima and x = -1 is a point of maxima of f.
 - (3) x = 1 is a point of maxima and x = -1 is a point of minimum of f.
 - (4) f(1) 4f(-1) = 4
- 2. Let f(x) be a polynomial of degree 3 such that f(-1) = 10, f(1) = -6, f(x) has a critical point at x = -1 and f'(x) has a critical point at x = 1. Then f(x) has a local minima at x = -1.
- 3. Let a function $f : [0, 5] \to \mathbf{R}$ be continuous, f(1) = 3 and F be defined as: $F(x) = \int_{1}^{x} t^{2}g(t) dt, \text{ where } g(t) = \int_{1}^{t} f(u) du.$ Then for the function F, the point x = 1 is:
 - Their for the function 1, the point
 - (1) a point of local minima.
 - (2) not a critical point.
 - (3) a point of inflection.
 - (4) a point of local maxima.
- 4. A spherical iron ball of 10 cm radius is coated with a layer of ice of uniform thickness the melts at a rate of 50 cm³/min. When the thickness of ice is 5 cm, then the rate (in cm/min.) at which of the thickness of ice decreases, is:
 - (1) $\frac{1}{36\pi}$
- (2) $\frac{5}{6\pi}$
- (3) $\frac{1}{18\pi}$
- (4) $\frac{1}{54\pi}$

- 5. Let P(h, k) be a point on the curve $y = x^2 + 7x + 2$, nearest to the line, y = 3x 3. Then the equation of the normal to the curve at P is:
 - (1) x + 3y 62 = 0
- (2) x 3y 11 = 0
- (3) x 3y + 22 = 0
- (4) x + 3y + 26 = 0
- 6. If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to:
 - (1) 12

(2) -24

(3)6

- (4) 12
- 7. Suppose f(x) is a polynomial of degree four, having critical points at -1, 0, 1. If $T = \{x \in R | f(x) = f(0)\}$, then the sum of squares of all the elements of T is:
 - (1) 6

(2) 8

(3)4

- (4) 2
- 8. If x = 1 is a critical point of the function $f(x) = (3x^2 + ax 2 a) e^x$, then:
 - (1) x = 1 is a local minima and $x = -\frac{2}{3}$ is a local maxima of f.
 - (2) x = 1 is a local maxima and $x = -\frac{2}{3}$ is a local minima of f.
 - (3) x = 1 and $x = -\frac{2}{3}$ are local minima of f.
 - (4) x = 1 and $x = -\frac{2}{3}$ are local maxima of f.
- 9. Let AD and BC be two vertical poles at A and B respectively on a horizontal ground. If AD = 8 m, BC = 11 m and AB = 10 m; then the distance (in meters) of a point M on AB from the point A such that MD² + MC² is minimum is_.

10. The set of all real values of λ for which the function $f(x) = (1 - \cos^2 x).(\lambda + \sin x)$,

$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
, has exactly one maxima and

exactly one minima, is:

(1)
$$\left(-\frac{1}{2}, \frac{1}{2}\right) - \{0\}$$
 (2) $\left(-\frac{1}{2}, \frac{1}{2}\right)$

$$(2)\left(-\frac{1}{2},\frac{1}{2}\right)$$

$$(3)\left(-\frac{3}{2},\frac{3}{2}\right)$$

$$(3)\left(-\frac{3}{2},\frac{3}{2}\right) \qquad (4)\left(-\frac{3}{2},\frac{3}{2}\right) - \{0\}$$

SOLUTION

1. NTA Ans. (2)

Sol.
$$\lim_{x \to 0} \left(2 + \frac{f(x)}{x^3} \right) = 4$$

$$\Rightarrow f(x) = 2x^3 + ax^4 + bx^5$$

$$f'(x) = 6x^2 + 4ax^3 + 5bx^4$$

$$f'(1) = 0, f'(-1) = 0$$

$$a = 0, b = \frac{-6}{5} \implies f(x) = 2x^3 - \frac{6}{5}x^5$$

$$f'(x) = 6x^2 - 6x^4$$

= $6x^2(1-x)(1+x)$

Sign scheme for f'(x)

$$\xrightarrow{\text{-ve}} \xrightarrow{\text{+ve}} \xrightarrow{\text{+ve}} \xrightarrow{\text{-ve}} \xrightarrow{\text{-ve}}$$

Minima at x = -1

Maxima at x = 1

2. NTA Ans. (3)

Sol.
$$f''(x) = \lambda(x - 1)$$

$$f'(x) = \frac{\lambda x^2}{2} - \lambda x + C \Rightarrow f'(-1) = 0 \Rightarrow c = \frac{-3\lambda}{2}$$

$$f(x) = \frac{\lambda x^3}{6} - \frac{\lambda x^2}{2} - \frac{3\lambda}{2}x + d$$

$$f(1) = -6 \Rightarrow -11\lambda + 6d = -36$$
 ...(i)

$$f(-1) = 10 \Rightarrow 5\lambda + 6d = 60$$
 ...(ii)

from (i) & (ii) $\lambda = 6$ & d = 5

$$f(x) = x^3 - 3x^2 - 9x + 5$$

Which has minima at x = 3

Ans. 3.00

3. NTA Ans. (1)

Sol.
$$F'(x) = x^2 g(x) = x^2 \int_{1}^{x} f(u) du \implies F'(1) = 0$$

$$F''(x) = x^2 f(x) - 2x \int_{1}^{x} f(u) du$$

$$F''(1) = 1.f(1) - 2 \times 0$$

$$F''(1) = 3$$

$$F'(1) = 0$$
 and $F''(1) = 3 > 0$ So, Minima

4. NTA Ans. (3)

Sol. Let thickness of ice be 'h'.

Vol. of ice =
$$v = \frac{4\pi}{3} ((10 + h)^3 - 10^3)$$

$$\frac{dv}{dt} = \frac{4\pi}{3} \left(3(10+h)^2 \right) \cdot \frac{dh}{dt}$$

Given
$$\frac{dv}{dt} = 50 \text{cm}^3 / \text{min}$$
 and $h = 5 \text{cm}$

$$\Rightarrow 50 = \frac{4\pi}{3} \left(3(10+5)^2 \right) \frac{dh}{dt}$$

$$\Rightarrow \frac{dh}{dt} = \frac{50}{4\pi \times 15^2} = \frac{1}{18\pi} \text{ cm/min}$$

5. Official Ans. by NTA (4)

Sol. $y=x^2+7x+2$ p

Let L be the common normal to parabola $y = x^2 + 7x + 2$ and line y = 3x - 3 \Rightarrow slope of tangent of $y = x^2 + 7x + 2$ at P = 3

$$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}\bigg|_{\mathrm{For P}} = 3$$

$$\Rightarrow$$
 2x + 7 = 3 \Rightarrow x = -2 \Rightarrow y = -8

So P(-2, -8)

Normal at P: x + 3y + C = 0

 \Rightarrow C = 26 (P satisfies the line)

Normal: x + 3y + 26 = 0

ALLEN

6. Official Ans. by NTA (4)

Sol. Since p(x) has realtive extreme at

$$x = 1 & 2$$

so
$$p'(x) = 0$$
 at $x = 1 & 2$

$$\Rightarrow$$
 p'(x) = A(x - 1) (x - 2)

$$\Rightarrow$$
 p(x) = $\int A(x^2 - 3x + 2)dx$

$$p(x) = A\left(\frac{x^3}{3} - \frac{3x^2}{2} + 2x\right) + C \quad ...(1)$$

$$P(1) = 8$$

From(1)

$$8 = A\left(\frac{1}{3} - \frac{3}{2} + 2\right) + C$$

$$\Rightarrow 8 = \frac{5A}{6} + C \Rightarrow \boxed{48 = 5A + 6C} \quad ...(3)$$

$$P(2) = 4$$

$$\Rightarrow 4 = A \left(\frac{8}{3} - 6 + 4 \right) + C$$

$$\Rightarrow 4 = \frac{2A}{3} + C \Rightarrow \boxed{12 = 2A + 3C} \dots (4)$$

From 3 & 4, C = -12

So
$$P(0) = C = \boxed{-12}$$

7. Official Ans. by NTA (3)

Sol.
$$f'(x) = x(x+1)(x-1) = x^3 - x$$

$$\int df(x) = \int x^3 - x \, dx$$

$$f(x) = \frac{x^4}{4} - \frac{x^2}{2} + C$$

$$f(x) = f(0)$$

$$\frac{x^4}{4} - \frac{x^2}{2} = 0$$

$$x^2(x^2-2)=0$$

$$x = 0, 0, \sqrt{2}, -\sqrt{2}$$

$$x_1^2 + x_2^2 + x_3^2 = 0 + 2 + 2 = 4$$

8. Official Ans. by NTA (1)

Sol.
$$f(x) = (3x^2 + ax - 2 - a)e^x$$

$$f'(x) = (3x^2 + ax - 2 - a)e^x + e^x (6x + a)$$
$$= e^x (3x^2 + x(6 + a) - 2)$$

$$f'(x) = 0$$
 at $x = 1$

$$\Rightarrow$$
 3 + (6 + a) - 2 = 0

$$a = -7$$

$$f'(x) = e^x(3x^2 - x - 2)$$

$$= e^{x} (x - 1) (3x + 2)$$

$$\frac{+}{-2/3}$$
 $\frac{+}{1}$

x = 1 is point of local minima

 $x = \frac{-2}{3}$ is point of local maxima

9. Official Ans. by NTA (5.00)

$$(MD)^2 + (MC)^2 = h^2 + 64 + (h - 10)^2 + 121$$

$$= 2h^2 - 20h + 64 + 100 + 121$$

$$= 2(h^2 - 10h) + 285$$

$$= 2(h-5)^2 + 235$$

it is minimum if h = 5

10. Official Ans. by NTA (4)

Sol.
$$f(x) = (1 - \cos^2 x)(\lambda + \sin x)$$
 $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$f(x) = \lambda \sin^2 x + \sin^3 x$$

$$f'(x) = 2\lambda \sin x \cos x + 3\sin^2 x \cos x$$

$$f'(x) = \sin x \cos x (2\lambda + 3\sin x)$$

$$\sin x = 0, \ \frac{-2\lambda}{3} \ , \ (\lambda \neq 0)$$

for exactly one maxima & minima

$$\frac{-2\lambda}{3} \in (-1, 1) \Rightarrow \lambda \in \left(\frac{-3}{2}, \frac{3}{2}\right)$$

$$\lambda \in \left(-\frac{3}{2}, \frac{3}{2}\right) - \{0\}$$