MAXIMA \& MINIMA

1. Let $f(x)$ be a polynomial of degree 5 such that $x= \pm 1$ are its critical points. If $\lim _{x \rightarrow 0}\left(2+\frac{f(x)}{x^{3}}\right)=4$, then which one of the following is not true?
(1) f is an odd function
(2) $x=1$ is a point of minima and $x=-1$ is a point of maxima of f.
(3) $x=1$ is a point of maxima and $x=-1$ is a point of minimum of f.
(4) $f(1)-4 f(-1)=4$
2. Let $f(\mathrm{x})$ be a polynomial of degree 3 such that $f(-1)=10, f(1)=-6, f(x)$ has a critical point at $x=-1$ and $f^{\prime}(x)$ has a critical point at $\mathrm{x}=1$. Then $f(\mathrm{x})$ has a local minima at $\mathrm{x}=$ \qquad _.
3. Let a function $f:[0,5] \rightarrow \mathbf{R}$ be continuous, $f(1)=3$ and F be defined as: $F(x)=\int_{1}^{x} t^{2} g(t) d t$, where $g(t)=\int_{1}^{t} f(u) d u$. Then for the function F, the point $x=1$ is :
(1) a point of local minima.
(2) not a critical point.
(3) a point of inflection.
(4) a point of local maxima.
4. A spherical iron ball of 10 cm radius is coated with a layer of ice of uniform thickness the melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$. When the thickness of ice is 5 cm , then the rate (in cm/ min.) at which of the thickness of ice decreases, is :
(1) $\frac{1}{36 \pi}$
(2) $\frac{5}{6 \pi}$
(3) $\frac{1}{18 \pi}$
(4) $\frac{1}{54 \pi}$
5. Let $\mathrm{P}(\mathrm{h}, \mathrm{k})$ be a point on the curve $\mathrm{y}=\mathrm{x}^{2}+7 \mathrm{x}+2$, nearest to the line, $y=3 x-3$. Then the equation of the normal to the curve at P is :
(1) $x+3 y-62=0$
(2) $x-3 y-11=0$
(3) $x-3 y+22=0$
(4) $x+3 y+26=0$
6. If $p(x)$ be a polynomial of degree three that has a local maximum value 8 at $x=1$ and a local minimum value 4 at $x=2$; then $p(0)$ is equal to:
(1) 12
(2) -24
(3) 6
(4) -12
7. Suppose $f(x)$ is a polynomial of degree four, having critical points at $-1,0,1$. If $T=\{x \in R \mid f(x)=f(0)\}$, then the sum of squares of all the elements of T is :
(1) 6
(2) 8
(3) 4
(4) 2
8. If $x=1$ is a critical point of the function $f(x)=\left(3 x^{2}+a x-2-a\right) e^{x}$, then :
(1) $x=1$ is a local minima and $x=-\frac{2}{3}$ is a local maxima of f.
(2) $x=1$ is a local maxima and $x=-\frac{2}{3}$ is a local minima of f.
(3) $x=1$ and $x=-\frac{2}{3}$ are local minima of f.
(4) $x=1$ and $x=-\frac{2}{3}$ are local maxima of f.
9. Let AD and BC be two vertical poles at A and B respectively on a horizontal ground. If $\mathrm{AD}=8 \mathrm{~m}, \mathrm{BC}=11 \mathrm{~m}$ and $\mathrm{AB}=10 \mathrm{~m}$; then the distance (in meters) of a point M on AB from the point A such that $\mathrm{MD}^{2}+\mathrm{MC}^{2}$ is minimum is_.
10. The set of all real values of λ for which the function $f(x)=\left(1-\cos ^{2} \mathrm{x}\right) \cdot(\lambda+\sin \mathrm{x})$, $\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, has exactly one maxima and exactly one minima, is :
(1) $\left(-\frac{1}{2}, \frac{1}{2}\right)-\{0\}$
(2) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
(3) $\left(-\frac{3}{2}, \frac{3}{2}\right)$
(4) $\left(-\frac{3}{2}, \frac{3}{2}\right)-\{0\}$

SOLUTION

1. NTA Ans. (2)

Sol. $\operatorname{Lim}_{x \rightarrow 0}\left(2+\frac{f(x)}{x^{3}}\right)=4$

$$
\begin{aligned}
\Rightarrow f(x) & =2 x^{3}+a x^{4}+b x^{5} \\
f^{\prime}(x) & =6 x^{2}+4 a x^{3}+5 b x^{4} \\
f^{\prime}(1) & =0, f^{\prime}(-1)=0 \\
\mathrm{a} & =0, b=\frac{-6}{5} \Rightarrow f(x)=2 x^{3}-\frac{6}{5} x^{5} \\
f^{\prime}(x) & =6 x^{2}-6 x^{4} \\
& =6 x^{2}(1-x)(1+x)
\end{aligned}
$$

Sign scheme for $f^{\prime}(x)$

Minima at $\mathrm{x}=-1$
Maxima at $\mathrm{x}=1$
2. NTA Ans. (3)

Sol. $f^{\prime \prime}(\mathrm{x})=\lambda(\mathrm{x}-1)$
$f^{\prime}(\mathrm{x})=\frac{\lambda \mathrm{x}^{2}}{2}-\lambda \mathrm{x}+\mathrm{C} \Rightarrow f^{\prime}(-1)=0 \Rightarrow \mathrm{c}=\frac{-3 \lambda}{2}$
$f(\mathrm{x})=\frac{\lambda \mathrm{x}^{3}}{6}-\frac{\lambda \mathrm{x}^{2}}{2}-\frac{3 \lambda}{2} \mathrm{x}+\mathrm{d}$
$f(1)=-6 \Rightarrow-11 \lambda+6 d=-36$
$f(-1)=10 \Rightarrow 5 \lambda+6 d=60$
from (i) \& (ii) $\lambda=6 \& d=5$
$f(x)=x^{3}-3 x^{2}-9 x+5$
Which has minima at $x=3$
Ans. 3.00
3. NTA Ans. (1)

Sol. $\quad F^{\prime}(x)=x^{2} g(x)=x^{2} \int_{1}^{x} f(u) d u \Rightarrow F^{\prime}(1)=0$
$F^{\prime \prime}(x)=x^{2} f(x)-2 x \int_{1}^{x} f(u) d u$
$F^{\prime \prime}(1)=1 . f(1)-2 \times 0$
$F^{\prime \prime}(1)=3$
$\mathrm{F}^{\prime}(1)=0$ and $\mathrm{F}^{\prime \prime}(1)=3>0$ So, Minima
4. NTA Ans. (3)

Sol. Let thickness of ice be 'h'.
Vol. of ice $=v=\frac{4 \pi}{3}\left((10+h)^{3}-10^{3}\right)$
$\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{4 \pi}{3}\left(3(10+\mathrm{h})^{2}\right) \cdot \frac{\mathrm{dh}}{\mathrm{dt}}$
Given $\frac{\mathrm{dv}}{\mathrm{dt}}=50 \mathrm{~cm}^{3} / \mathrm{min}$ and $\mathrm{h}=5 \mathrm{~cm}$
$\Rightarrow 50=\frac{4 \pi}{3}\left(3(10+5)^{2}\right) \frac{\mathrm{dh}}{\mathrm{dt}}$
$\Rightarrow \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{50}{4 \pi \times 15^{2}}=\frac{1}{18 \pi} \mathrm{~cm} / \mathrm{min}$
5. Official Ans. by NTA (4)

Sol.

Let L be the common normal to parabola $\mathrm{y}=$ $x^{2}+7 x+2$ and line $y=3 x-3$
\Rightarrow slope of tangent of $y=x^{2}+7 x+2$ at $P=$ 3
$\left.\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}\right]_{\text {For } P}=3$
$\Rightarrow 2 \mathrm{x}+7=3 \Rightarrow \mathrm{x}=-2 \Rightarrow \mathrm{y}=-8$
So $\mathrm{P}(-2,-8)$
Normal at $\mathrm{P}: \mathrm{x}+3 \mathrm{y}+\mathrm{C}=0$
$\Rightarrow \mathrm{C}=26$ (P satisfies the line)
Normal: $x+3 y+26=0$
6. Official Ans. by NTA (4)

Sol. Since $p(x)$ has realtive extreme at

$\mathrm{x}=1 \& 2$
so $\mathrm{p}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}=1 \& 2$
$\Rightarrow \mathrm{p}^{\prime}(\mathrm{x})=\mathrm{A}(\mathrm{x}-1)(\mathrm{x}-2)$
$\Rightarrow \mathrm{p}(\mathrm{x})=\int \mathrm{A}\left(\mathrm{x}^{2}-3 \mathrm{x}+2\right) \mathrm{dx}$
$p(x)=A\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+2 x\right)+C$
$\mathrm{P}(1)=8$
From (1)
$8=\mathrm{A}\left(\frac{1}{3}-\frac{3}{2}+2\right)+\mathrm{C}$
$\Rightarrow 8=\frac{5 \mathrm{~A}}{6}+\mathrm{C} \Rightarrow 48=5 \mathrm{~A}+6 \mathrm{C}$
$P(2)=4$
$\Rightarrow 4=\mathrm{A}\left(\frac{8}{3}-6+4\right)+\mathrm{C}$
$\Rightarrow 4=\frac{2 \mathrm{~A}}{3}+\mathrm{C} \Rightarrow 12=2 \mathrm{~A}+3 \mathrm{C}$
From $3 \& 4, C=-12$
So $\mathrm{P}(0)=\mathrm{C}=-12$
7. Official Ans. by NTA (3)

Sol. $f^{\prime}(x)=x(x+1)(x-1)=x^{3}-x$
$\int d f(x)=\int x^{3}-x d x$
$f(x)=\frac{x^{4}}{4}-\frac{x^{2}}{2}+C$
$\mathrm{f}(\mathrm{x})=\mathrm{f}(0)$
$\frac{x^{4}}{4}-\frac{x^{2}}{2}=0$
$x^{2}\left(x^{2}-2\right)=0$
$\mathrm{x}=0,0, \sqrt{2},-\sqrt{2}$
$\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}{ }^{2}=0+2+2=4$

8. Official Ans. by NTA (1)

Sol. $f(x)=\left(3 x^{2}+a x-2-a\right) e^{x}$
$f^{\prime}(x)=\left(3 x^{2}+a x-2-a\right) e^{x}+e^{x}(6 x+a)$

$$
=e^{x}\left(3 x^{2}+x(6+a)-2\right)
$$

$\mathrm{f}^{\prime}(\mathrm{x})=0$ at $\mathrm{x}=1$
$\Rightarrow 3+(6+a)-2=0$
$\mathrm{a}=-7$
$f^{\prime}(x)=e^{x}\left(3 x^{2}-x-2\right)$
$=\mathrm{e}^{\mathrm{x}}(\mathrm{x}-1)(3 \mathrm{x}+2)$

$x=1$ is point of local minima
$x=\frac{-2}{3}$ is point of local maxima
9. Official Ans. by NTA (5.00)

Sol.

$(\mathrm{MD})^{2}+(\mathrm{MC})^{2}=\mathrm{h}^{2}+64+(\mathrm{h}-10)^{2}+121$
$=2 h^{2}-20 \mathrm{~h}+64+100+121$
$=2\left(\mathrm{~h}^{2}-10 \mathrm{~h}\right)+285$
$=2(\mathrm{~h}-5)^{2}+235$
it is minimum if $h=5$
10. Official Ans. by NTA (4)

Sol. $f(\mathrm{x})=\left(1-\cos ^{2} \mathrm{x}\right)(\lambda+\sin \mathrm{x}) \quad \mathrm{x} \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
$f(x)=\lambda \sin ^{2} \mathrm{x}+\sin ^{3} \mathrm{x}$
$f^{\prime}(x)=2 \lambda \sin x \cos x+3 \sin ^{2} x \cos x$
$f^{\prime}(x)=\sin x \cos x(2 \lambda+3 \sin x)$
$\sin x=0, \frac{-2 \lambda}{3},(\lambda \neq 0)$
for exactly one maxima \& minima
$\frac{-2 \lambda}{3} \in(-1,1) \Rightarrow \lambda \in\left(\frac{-3}{2}, \frac{3}{2}\right)$
$\lambda \in\left(-\frac{3}{2}, \frac{3}{2}\right)-\{0\}$

