REDUCTION - 1. Which of the following compounds produces an optically inactive compound on hydrogenation? - (1) H CH₃ - (2) H_CH₃ - (3) H CH₃ - (4) H_CH₃ - 2. The major product [R] in the following sequence of reactions is:- - $HC = CH \xrightarrow{\text{(i) LiNH}_2/\text{ether}} [P]$ $(CH_3)_2 CH = Br$ - $\frac{\text{(i) HgSO}_4/\text{H}_2\text{SO}_4}{\text{(ii) NaBH}_4} \rightarrow [Q] \xrightarrow{\text{Conc.H}_2\text{SO}_4} \rightarrow [R]$ - (1) C=CH-CH₃ (CH₃),CH - (2) H_3C $C=C(CH_3)_2$ H_3CCH_2 - (3) H₂C C-CH₂-CH₃ CH(CH₃)₂ - (4) H_3C CH-CH=CH₂ (CH₃)₂CH - 3. The most appropriate reagent for conversion of C_2H_5CN into $CH_3CH_2CH_2NH_2$ is : - (1) Na(CN)BH₃ - (2) LiAlH₄ - (3) NaBH₄ - (4) CaH₂ - 4. The correct match between **Item-I** (starting material) and **Item-II** (reagent) for the preparation of benzaldehyde is: Item-I Item-II (I)Benzene (P) HCl and SnCl₂, H₃O⁺ (II)Benzonitrile $(Q) H_2, Pd-BaSO_4, S$ and quinoline - (III)Benzoyl Chloride (R)CO, HCl and AlCl₃ - (1) (I)-(Q), (II)-(R) and (III)-(P) - (2) (I)-(R), (II)-(Q) and (III)-(P) - (3) (I)-(R), (II)-(P) and (III)-(Q) - (4) (I)-(P), (II)-(Q) and (III)-(R) # SOLUTION #### 1. Official Ans. by NTA (2) #### 2. Official Ans. by NTA (2) Now :- (i) HgSO₄/dil.H₂SO₄ (ii) NaBH₄ is convert triple bond into ketone and formed ketone is reduced by NaBH₄ and convert into Alcohol. ## 3. Official Ans. by NTA (2) Sol. $$CH_3-CH_2-C\equiv N \xrightarrow{?} CH_3-CH_2-CH_2-NH_2$$ $CH_3-CH_2-C\equiv N \xrightarrow{LiAlH_4} CH_3-CH_2-CH_2-NH_2$ ## 4. Official Ans. by NTA (3) (ii) $$CN$$ $CH=NH$ $C-H$ $$CH=NH$$ $$CH=N$$