WAVE OPTICS

1. A monochromatic light wave is incident normally on a glass slab of thickness d, as shown in the figure. The refractive index of the slab increases linearly from n_{1} to n_{2} over the height h. Which of the following statement(s) is (are) true about the light wave emerging out of the slab?
[JEE(Advanced) 2023]

(A) It will deflect up by an angle $\tan ^{-1}\left[\frac{\left(\mathrm{n}_{2}^{2}-\mathrm{n}_{1}^{2}\right) \mathrm{d}}{2 \mathrm{~h}}\right]$
(B) It will deflect up by an angle $\tan ^{-1}\left[\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) \mathrm{d}}{\mathrm{h}}\right]$
(C) It will not deflect.
(D) The deflection angle depends only on $\left(n_{2}-n_{1}\right)$ and not on the individual values of n_{1} and n_{2}.
2. The electric field associated with an electromagnetic wave propagating in a dielectric medium is given by $\overrightarrow{\mathrm{E}}=30(2 \hat{x}+\hat{y}) \sin \left[2 \pi\left(5 \times 10^{14} \mathrm{t}-\frac{10^{7}}{3} \mathrm{z}\right)\right] \mathrm{Vm}^{-1}$. Which of the following option(s) is(are) correct?
[Given: The speed of light in vacuum, $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$]
[JEE(Advanced) 2023]
(A) $\mathrm{B}_{\mathrm{x}}=-2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} \mathrm{t}-\frac{10^{7}}{3} \mathrm{z}\right)\right] \mathrm{Wbm}^{-2}$.
(B) $\mathrm{B}_{\mathrm{y}}=2 \times 10^{-7} \sin \left[2 \pi\left(5 \times 10^{14} \mathrm{t}-\frac{10^{7}}{3} \mathrm{z}\right)\right] \mathrm{Wbm}^{-2}$
(C) The wave is polarized in the xy-plane with polarization angle 30° with respect to the x-axis.
(D) The refractive index of the medium is 2 .
3. A double slit setup is shown in the figure. One of the slits is in medium 2 of refractive index n_{2}. The other slit is at the interface of this medium with another medium 1 of refractive index $n_{1}\left(\neq n_{2}\right)$.

The line joining the slits is perpendicular to the interface and the distance between the slits is d. The slit widths are much smaller than d. A monochromatic parallel beam of light is incident on the slits from medium 1. A detector is placed in medium 2 at a large distance from the slits, and at an angle θ from the line joining them, so that θ equals the angle of refraction of the beam. Consider two approximately parallel rays from the slits received by the detector.

Medium 1

Medium 2

[JEE(Advanced) 2022]

Which of the following statement(s) is (are) correct?
(A) The phase difference between the two rays is independent of d.
(B) The two rays interfere constructively at the detector.
(C) The phase difference between the two rays depends on n_{1} but is independent of n_{2}.
(D) The phase difference between the two rays vanishes only for certain values of d and the angle of incidence of the beam, with θ being the corresponding angle of refraction.
4. A parallel beam of light strikes a piece of transparent glass having cross section as shown in the figure below. Correct shape of the emergent wavefront will be (figures are schematic and not drawn to scale)-
[JEE(Advanced) 2020]

(A)

(B)
\sum
(C)

(D)

5. In a Young's double slit experiment, the slit separation d is 0.3 mm and the screen distance D is 1 m . A parallel beam of light of wavelength 600 nm is incident on the slits at angle α as shown in figure. On the screen, the point O is equidistant from the slits and distance PO is 11.0 mm . Which of the following statement(s) is/are correct?
[JEE(Advanced) 2019]

(A) For $\alpha=\frac{0.36}{\pi}$ degree, there will be destructive interference at point O .
(B) Fringe spacing depends on α
(C) For $\alpha=\frac{0.36}{\pi}$ degree, there will be destructive interference at point P
(D) For $\alpha=0$, there will be constructive interference at point P .

ALLEM ${ }^{\text {B }}$

6. Two coherent monochromatic point sources S_{1} and S_{2} of wavelength $\lambda=600 \mathrm{~nm}$ are placed symmetrically on either side of the center of the circle as shown. The sources are separated by a distance $\mathrm{d}=1.8 \mathrm{~mm}$. This arrangement produces interference fringes visible as alternate bright and dark spots on the circumference of the circle. The angular separation between two consecutive bright spots is $\Delta \theta$. Which of the following options is/are correct ?
[JEE(Advanced) 2017]

(A) A dark spot will be formed at the point P_{2}
(B) The angular separation between two consecutive bright spots decreases as we move from P_{1} to P_{2} along the first quadrant
(C) At P_{2} the order of the fringe will be maximum
(D) The total number of fringes produced between P_{1} and P_{2} in the first quadrant is close to 3000
7. While conducting the Young's double slit experiment, a student replaced the two slits with a large opaque plate in the x-y plane containing two small holes that act as two coherent point sources $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ emitting light of wavelength 600 nm . The student mistakenly placed the screen parallel to the $\mathrm{x}-\mathrm{z}$ plane (for $\mathrm{z}>0$) at a distance $\mathrm{D}=3 \mathrm{~m}$ from the mid-point of $\mathrm{S}_{1} \mathrm{~S}_{2}$, as shown schematically in the figure. The distance between the sources $\mathrm{d}=0.6003 \mathrm{~mm}$. The origin O is at the intersection of the screen and the line joining $\mathrm{S}_{1} \mathrm{~S}_{2}$. Which of the following is (are) true of the intensity pattern on the screen?
[JEE(Advanced) 2016]

(A) Hyperbolic bright and dark bands with foci symmetrically placed about O in the x -direction
(B) Semi circular bright and dark bands centered at point O
(C) The region very close to the point O will be dark
(D) Straight bright and dark bands parallel to the x -axis
8. A Young's double slit interference arrangement with slits S_{1} and S_{2} is immersed in water (refractive index $=4 / 3$) as shown in the figure. The positions of maxima on the surface of water are given by $\mathrm{x}^{2}=\mathrm{p}^{2} \mathrm{~m}^{2} \lambda^{2}-\mathrm{d}^{2}$, where λ is the wavelength of light in air (refractive index $=1$), 2 d is the separation between the slits and m is an integer. The value of p is.
[JEE(Advanced) 2015]

9. A light source, which emits two wavelengths $\lambda_{1}=400 \mathrm{~nm}$ and $\lambda_{2}=600 \mathrm{~nm}$, is used in a Young's double slit experiment. If recorded fringe widths for λ_{1} and λ_{2} are β_{1} and β_{2} and the number of fringes for them within a distance y on one side of the central maximum are m_{1} and m_{2}, respectively, then :-
[JEE(Advanced) 2014]
(A) $\beta_{2}>\beta_{1}$
(B) $\mathrm{m}_{1}>\mathrm{m}_{2}$
(C) From the central maximum, $3^{\text {rd }}$ maximum of λ_{2} overlaps with $5^{\text {th }}$ minimum of λ_{1}
(D) The angular separation of fringes of λ_{1} is greater than λ_{2}

SOLUTIONS

1. Ans. (B, D)

Sol.

$\mathrm{n}_{1} \mathrm{~d}+\ell=\mathrm{n}_{2} \mathrm{~d}$
$\tan \theta=\frac{\ell}{\mathrm{h}}=\frac{\left(\mathrm{n}_{2}-\mathrm{n}_{1}\right) \mathrm{d}}{\mathrm{h}}$
2. Ans. (A, D)

Sol.

$$
\mathrm{C}_{\text {medium }}=\frac{5 \times 10^{14}}{10^{7} / 3}=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad(\therefore \mu=2)
$$

$$
C_{\text {medium }}=\frac{E}{B}
$$

$\Rightarrow \mathrm{B}=\frac{\mathrm{E}}{\mathrm{C}_{\mathrm{m}}}=\frac{30 \sqrt{5}}{1.5 \times 10^{8}}=2 \sqrt{5} \times 10^{-7}$
$\overrightarrow{\mathrm{B}}_{\text {direction }} \equiv \hat{\mathrm{k}} \times(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}) \equiv \frac{2 \hat{\mathrm{j}}-\hat{\mathrm{i}}}{\sqrt{5}}$
$\therefore \overrightarrow{\mathrm{B}}=2 \times 10^{-7}(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}) \sin \left[27\left(5 \times 10^{17} \mathrm{t}-\frac{10^{7}}{3} \mathrm{z}\right)\right]$

3. Ans. (A, B)

Sol.

Optical path difference \rightarrow
$\Delta \mathrm{x}=\mathrm{n}_{1}(\mathrm{~d} \tan \theta) \sin \alpha-\mathrm{n}_{2}(\mathrm{dtan} \theta) \sin \theta$
$=\left(\mathrm{n}_{1} \sin \alpha-\mathrm{n}_{2} \sin \theta\right) \mathrm{dtan} \theta$
$=0$
$\Rightarrow \Delta \phi=0$
4. Ans. (A)

Sol.

(A)

5. Ans. (C)

Sol. (A) $\Delta \mathrm{x}=\mathrm{d} \sin \alpha=\mathrm{d} \alpha$ (as α is very small)

$$
\begin{aligned}
& \alpha=\frac{.36}{180}=\left(2 \times 10^{-3}\right) \mathrm{rad} \\
& \frac{\Delta \mathrm{x}}{\lambda}=\frac{\left(3 \times 10^{-4}\right)\left(2 \times 10^{-3}\right)}{6 \times 10^{-7}}=1
\end{aligned}
$$

so constructive interference
(B) $\beta=\frac{\mathrm{D} \lambda}{\mathrm{d}}$
(C) $\quad \Delta \mathrm{x}_{\mathrm{p}}=\mathrm{d} \alpha+\frac{\mathrm{dy}}{\mathrm{D}}$

$$
\begin{aligned}
& =3 \times 10^{-4}\left(2 \times 10^{-3}+11 \times 10^{-3}\right) \\
& =39 \times 10^{-7} \\
& \frac{\Delta \mathrm{x}_{\mathrm{p}}}{\lambda}=\frac{39 \times 10^{-7}}{6 \times 10^{-7}}=6.5 \text { so destructive }
\end{aligned}
$$

(D) $\quad \Delta x_{p}=\frac{d y}{D}=\left(3 \times 10^{-4}\right) \times 11 \times 10^{-3}$

$$
=33 \times 10^{-7}
$$

$$
\frac{\Delta \mathrm{x}_{\mathrm{p}}}{\lambda}=\frac{33 \times 10^{-7}}{6 \times 10^{-7}}=5.5 \Rightarrow \text { destructive }
$$

6. Ans. (C, D)

Sol. At point $\mathrm{P}_{2} ; \Delta \mathrm{x}=\mathrm{d}=1.8 \mathrm{~mm}=3000 \lambda$
hence a (bright fringe) will be formed at P_{2}
Now, $\Delta \mathrm{x}=\mathrm{d} \cos \theta=\mathrm{n} \lambda$

$$
\begin{aligned}
& \cos \theta=\frac{\mathrm{n} \lambda}{\mathrm{~d}} \\
& -\sin \theta \Delta \theta=(\Delta \mathrm{n}) \frac{\lambda}{\mathrm{d}} \\
& \Delta \theta=-(\Delta \mathrm{n}) \frac{\lambda}{\mathrm{d} \sin \theta}
\end{aligned}
$$

$\Delta \theta$ increases as θ decreases
At P_{2}, the order of fringe will be maximum.
For total no. of bright fringes
$\mathrm{d}=\mathrm{n} \lambda \Rightarrow \mathrm{n}=3000$
\therefore total no. of fringes $=3000$
7. Ans. (B, C)

Sol.

Path difference at point $\mathrm{O}=\mathrm{d}=.6003 \mathrm{~mm}$

$$
=600300 \mathrm{~nm}
$$

$=\frac{2001}{2}(600 \mathrm{~nm})=1000 \lambda+\frac{\lambda}{2}$
\Rightarrow minima form at point O
Line $S_{1} S_{2}$ and screen are \perp to each other so fringe pattern is circular (semi-circular because only half of screen is available)
8. Ans. (3)

Sol.

$\mathrm{x}_{1}=\sqrt{\mathrm{x}^{2}+\mathrm{d}^{2}}$
$\mathrm{x}_{2}=\frac{4}{3} \sqrt{\mathrm{x}^{2}+\mathrm{d}^{2}}$
$\Delta \mathrm{x}=\left(\frac{4}{3}-1\right) \sqrt{\mathrm{x}^{2}+\mathrm{d}^{2}}=\mathrm{n} \lambda$
$\frac{1}{3} \sqrt{\mathrm{x}^{2}+\mathrm{d}^{2}}=\mathrm{n} \lambda$
$\left(x^{2}+d^{2}\right)=9 n^{2} \lambda^{2}$
$\therefore(\mathrm{P}=3)$
9. Ans. (A, B, C)

Sol. $\beta=\frac{\lambda \mathrm{D}}{\mathrm{d}}$
$\lambda_{1}<\lambda_{2}$
$\beta_{2}>\beta_{1}$
$\mathrm{m}_{1} \beta_{1}=\mathrm{m}_{2} \beta_{2}=\mathrm{y}$
$\Rightarrow \mathrm{m}_{1}>\mathrm{m}_{2}$
$\mathrm{y}_{1}=3 \frac{\lambda_{2} \mathrm{D}}{\mathrm{d}}$
$\left.\mathrm{y}_{2}=4.5 \frac{\lambda_{1} \mathrm{D}}{\mathrm{d}}\right]$
$\theta=\frac{\beta}{D}=\frac{\lambda}{d}$
Hence A, B \& C are correct choices

