ALLEN®

2.

WAVE OPTICS

1. A monochromatic light wave is incident normally on a glass slab of thickness d, as shown in the figure. The refractive index of the slab increases linearly from n_1 to n_2 over the height h. Which of the following statement(s) is (are) true about the light wave emerging out of the slab? [JEE(Advanced) 2023]

(A) It will deflect up by an angle
$$\tan^{-1}\left[\frac{(n_2^2 - n_1^2)d}{2h}\right]$$

(B) It will deflect up by an angle $\tan^{-1}\left[\frac{(n_2^2 - n_1^2)d}{2h}\right]$
(C) It will not deflect.
(D) The deflection angle depends only on $(n_2 - n_1)$ and not on the individual values of n_1 and n_2 .
The electric field associated with an electromagnetic wave propagating in a dielectric medium is given by
 $\vec{E} = 30(2\hat{x} + \hat{y})\sin\left[2\pi\left(5 \times 10^{14}t - \frac{10^7}{3}z\right)\right] V m^{-1}$. Which of the following option(s) is(are) correct ?
[Given: The speed of light in vacuum, $c = 3 \times 10^8 \text{ ms}^{-1}$]
(A) $B_x = -2 \times 10^{-7} \sin\left[2\pi\left(5 \times 10^{14}t - \frac{10^7}{3}z\right)\right] Wbm^{-2}$.
(B) $B_y = 2 \times 10^{-7} \sin\left[2\pi\left(5 \times 10^{14}t - \frac{10^7}{3}z\right)\right] Wbm^{-2}$

[JEE(Advanced) 2023]

(C) The wave is polarized in the xy-plane with polarization angle 30° with respect to the x-axis. (D) The refractive index of the medium is 2.

3. A double slit setup is shown in the figure. One of the slits is in medium 2 of refractive index n_2 . The other slit is at the interface of this medium with another medium 1 of refractive index $n_1 \neq n_2$). The line joining the slits is perpendicular to the interface and the distance between the slits is d. The slit widths are much smaller than d. A monochromatic parallel beam of light is incident on the slits from medium 1. A detector is placed in medium 2 at a large distance from the slits, and at an angle θ from the line joining them, so that θ equals the angle of refraction of the beam. Consider two approximately parallel rays from the slits received by the detector.

[JEE(Advanced) 2022]

Which of the following statement(s) is (are) correct?

- (A) The phase difference between the two rays is independent of d.
- (B) The two rays interfere constructively at the detector.
- (C) The phase difference between the two rays depends on n_1 but is independent of n_2 .
- (D) The phase difference between the two rays vanishes only for certain values of d and the angle of incidence of the beam, with θ being the corresponding angle of refraction.
- 4. A parallel beam of light strikes a piece of transparent glass having cross section as shown in the figure below. Correct shape of the emergent wavefront will be (figures are schematic and not drawn to scale)-

[JEE(Advanced) 2020]

5. In a Young's double slit experiment, the slit separation d is 0.3 mm and the screen distance D is 1m. A parallel beam of light of wavelength 600nm is incident on the slits at angle α as shown in figure. On the screen, the point O is equidistant from the slits and distance PO is 11.0 mm. Which of the following statement(s) is/are correct? [JEE(Advanced) 2019]

- (A) For $\alpha = \frac{0.36}{\pi}$ degree, there will be destructive interference at point O.
- (B) Fringe spacing depends on α
- (C) For $\alpha = \frac{0.36}{\pi}$ degree, there will be destructive interference at point P
- (D) For $\alpha = 0$, there will be constructive interference at point P.

6. Two coherent monochromatic point sources S_1 and S_2 of wavelength $\lambda = 600$ nm are placed symmetrically on either side of the center of the circle as shown. The sources are separated by a distance d = 1.8 mm. This arrangement produces interference fringes visible as alternate bright and dark spots on the circumference of the circle. The angular separation between two consecutive bright spots is $\Delta \theta$. Which of the following options is/are correct ? [JEE(Advanced) 2017]

- (A) A dark spot will be formed at the point P_2
- (B) The angular separation between two consecutive bright spots decreases as we move from P₁ to P₂ along the first quadrant
- (C) At P₂ the order of the fringe will be maximum
- (D) The total number of fringes produced between P_1 and P_2 in the first quadrant is close to 3000
- 7. While conducting the Young's double slit experiment, a student replaced the two slits with a large opaque plate in the x-y plane containing two small holes that act as two coherent point sources (S_1, S_2) emitting light of wavelength 600 nm. The student mistakenly placed the screen parallel to the x-z plane (for z > 0) at a distance D = 3m from the mid-point of S_1S_2 , as shown schematically in the figure. The distance between the sources d = 0.6003 mm. The origin O is at the intersection of the screen and the line joining S_1S_2 . Which of the following is (are) true of the intensity pattern on the screen ?

[JEE(Advanced) 2016]

- (A) Hyperbolic bright and dark bands with foci symmetrically placed about O in the x-direction
- (B) Semi circular bright and dark bands centered at point O
- (C) The region very close to the point O will be dark
- (D) Straight bright and dark bands parallel to the x-axis

8. A Young's double slit interference arrangement with slits S₁ and S₂ is immersed in water (refractive index = 4/3) as shown in the figure. The positions of maxima on the surface of water are given by $x^2 = p^2 m^2 \lambda^2 - d^2$, where λ is the wavelength of light in air (refractive index = 1), 2d is the separation between the slits and m is an integer. The value of p is.

[JEE(Advanced) 2015]

9. A light source, which emits two wavelengths $\lambda_1 = 400$ nm and $\lambda_2 = 600$ nm, is used in a Young's double slit experiment. If recorded fringe widths for λ_1 and λ_2 are β_1 and β_2 and the number of fringes for them within a distance y on one side of the central maximum are m_1 and m_2 , respectively, then :-

[JEE(Advanced) 2014]

- (A) $\beta_2 > \beta_1$
- (B) $m_1 > m_2$
- (C) From the central maximum, 3^{rd} maximum of λ_2 overlaps with 5^{th} minimum of λ_1
- (D) The angular separation of fringes of λ_1 is greater than λ_2

ALLEN[®]

ALLEN[®]

(B)
$$\beta = \frac{D\lambda}{d}$$

(C) $\Delta x_p = d\alpha + \frac{dy}{D}$
 $= 3 \times 10^{-4} (2 \times 10^{-3} + 11 \times 10^{-3})$
 $= 39 \times 10^{-7}$
 $\frac{\Delta x_p}{\lambda} = \frac{39 \times 10^{-7}}{6 \times 10^{-7}} = 6.5$ so destructive
(D) $\Delta x_p = \frac{dy}{D} = (3 \times 10^{-4}) \times 11 \times 10^{-3}$
 $= 33 \times 10^{-7}$
 $\frac{\Delta x_p}{\lambda} = \frac{33 \times 10^{-7}}{6 \times 10^{-7}} = 5.5 \Rightarrow$ destructive
6. Ans. (C, D)
Sol. At point P₂; $\Delta x = d = 1.8$ mm = 3000 λ
hence a (bright fringe) will be formed at P₂
Now, $\Delta x = d \cos\theta = n\lambda$
 $\cos\theta = \frac{n\lambda}{d}$
 $-\sin\theta \Delta\theta = (\Delta n) \frac{\lambda}{d}$
 $\Delta\theta = -(\Delta n) \frac{\lambda}{d\sin\theta}$
 $\Delta\theta$ increases as θ decreases
At P₂, the order of fringe will be maximum.
For total no. of bright fringes
 $d = n\lambda \Rightarrow n = 3000$
 \therefore total no. of fringes = 3000
7. Ans. (B, C)
Sol.

Path difference at point O = d = .6003 mm= 600300 nm

$$=\frac{2001}{2}(600\,\mathrm{nm})=1000\lambda+\frac{\lambda}{2}$$

 \Rightarrow minima form at point O

Line S_1S_2 and screen are \perp to each other so fringe pattern is circular (semi-circular because only half of screen is available)

8. Ans. (3)
8. Ans. (3)

$$x_1 = \sqrt{x^2 + d^2}$$

 $x_2 = \frac{4}{3}\sqrt{x^2 + d^2}$
 $\Delta x = \left(\frac{4}{3} - 1\right)\sqrt{x^2 + d^2} = n\lambda$
 $\frac{1}{3}\sqrt{x^2 + d^2} = n\lambda$
 $(x^2 + d^2) = 9n^2\lambda^2$
 $\therefore (P = 3)$
9. Ans. (A, B, C)
Sol. $\beta = \frac{\lambda D}{d}$
 $\lambda_1 < \lambda_2$
 $\beta_2 > \beta_1$
 $m_1\beta_1 = m_2\beta_2 = y$
 $\Rightarrow m_1 > m_2$
 $y_1 = 3\frac{\lambda_2 D}{d}$
 $y_2 = 4.5\frac{\lambda_1 D}{d}$
Here $y_1 = y_2$
 $\theta = \frac{\beta}{D} = \frac{\lambda}{d}$
Hence A, B & C are correct choices

6

6.

7.