WAVE ON STRING

1. A string of length 1 m and mass $2 \times 10^{-5} \mathrm{~kg}$ is under tension T . when the string vibrates, two successive harmonics are found to occur at frequencies 750 Hz and 1000 Hz . The value of tension T is \qquad Newton.
[JEE(Advanced) 2023]
2. Answer the following by appropriately matching the lists based on the information given in the paragraph.
A musical instrument is made using four different metal strings, $1,2,3$ and 4 with mass per unit length μ, $2 \mu, 3 \mu$ and 4μ respectively. The instrument is played by vibrating the strings by varying the free length in between the range L_{0} and $2 \mathrm{~L}_{0}$. It is found that in string-1 (μ) at free length L_{0} and tension T_{0} the fundamental mode frequency is f_{0}.
List-I gives the above four strings while list-II the magnitude of some quantity.

List-I

(I) String-1 (μ)
(II) String-2 (2μ)
(III) String-3 (3μ)
(IV) String-4 (4μ)

List-II

(P) 1
(Q) $1 / 2$
(R) $1 / \sqrt{2}$
(S) $1 / \sqrt{3}$
(T) $3 / 16$
(U) $1 / 16$

If the tension in each string is T_{0}, the correct match for the highest fundamental frequency in f_{0} units will be,
[JEE(Advanced) 2019]
(A) I $\rightarrow \mathrm{P}, \mathrm{II} \rightarrow \mathrm{R}, \mathrm{III} \rightarrow \mathrm{S}, \mathrm{IV} \rightarrow \mathrm{Q}$
(B) $\mathrm{I} \rightarrow \mathrm{P}, \mathrm{II} \rightarrow \mathrm{Q}, \mathrm{III} \rightarrow \mathrm{T}, \mathrm{IV} \rightarrow \mathrm{S}$
(C) I $\rightarrow \mathrm{Q}, \mathrm{II} \rightarrow \mathrm{S}, \mathrm{III} \rightarrow \mathrm{R}$, IV $\rightarrow \mathrm{P}$
(D) $\mathrm{I} \rightarrow \mathrm{Q}, \mathrm{II} \rightarrow \mathrm{P}, \mathrm{III} \rightarrow \mathrm{R}, \mathrm{IV} \rightarrow \mathrm{T}$
3. Answer the following by appropriately matching the lists based on the information given in the paragraph.
A musical instrument is made using four different metal strings, $1,2,3$ and 4 with mass per unit length $\mu, 2 \mu, 3 \mu$ and 4μ respectively. The instrument is played by vibrating the strings by varying the free length in between the range L_{0} and $2 \mathrm{~L}_{0}$. It is found that in string-1 (μ) at free length L_{0} and tension T_{0} the fundamental mode frequency is f_{0}.
List-I gives the above four strings while list-II lists the magnitude of some quantity.

List-I

(I) String-1 (μ)
(II) String-2 (2μ)
(III) String-3 (3μ)
(IV) String-4 (4μ)

List-II

(P) 1
(Q) $1 / 2$
(R) $1 / \sqrt{2}$
(S) $1 / \sqrt{3}$
(T) $3 / 16$
(U) $1 / 16$

The length of the string $1,2,3$ and 4 are kept fixed at $\mathrm{L}_{0}, \frac{3 \mathrm{~L}_{0}}{2}, \frac{5 \mathrm{~L}_{0}}{4}$ and $\frac{7 \mathrm{~L}_{0}}{4}$, respectively. Strings $1,2,3$ and 4 are vibrated at their $1^{\text {st }}, 3^{\text {rd }}, 5^{\text {th }}$ and $14^{\text {th }}$ harmonics, respectively such that all the strings have same frequency. The correct match for the tension in the four strings in the units of T_{0} will be.
[JEE(Advanced) 2019]
(A) $\mathrm{I} \rightarrow \mathrm{P}, \mathrm{II} \rightarrow \mathrm{Q}, \mathrm{III} \rightarrow \mathrm{T}, \mathrm{IV} \rightarrow \mathrm{U}$
(B) $\mathrm{I} \rightarrow \mathrm{T}, \mathrm{II} \rightarrow \mathrm{Q}, \mathrm{III} \rightarrow \mathrm{R}, \mathrm{IV} \rightarrow \mathrm{U}$
(C) $\mathrm{I} \rightarrow \mathrm{P}, \mathrm{II} \rightarrow \mathrm{Q}, \mathrm{III} \rightarrow \mathrm{R}, \mathrm{IV} \rightarrow \mathrm{T}$
(D) $\mathrm{I} \rightarrow \mathrm{P}, \mathrm{II} \rightarrow \mathrm{R}, \mathrm{III} \rightarrow \mathrm{T}, \mathrm{IV} \rightarrow \mathrm{U}$
4. A block M hangs vertically at the bottom end of a uniform rope of constant mass per unit length. The top end of the rope is attached to a fixed rigid support at O . A transverse wave pulse (Pulse 1) of wavelength λ_{0} is produced at point O on the rope. The pulse takes time T_{OA} to reach point A . If the wave pulse of wavelength λ_{0} is produced at point A (Pulse 2) without disturbing the position of M it takes time $T_{A O}$ to reach point O . Which of the following options is/are correct?
[JEE(Advanced) 2017]

(A) The time $\mathrm{T}_{\mathrm{AO}}=\mathrm{T}_{\mathrm{OA}}$
(B) The velocities of the two pulses (Pulse 1 and Pulse 2) are the same at the midpoint of rope
(C) The wavelength of Pulse 1 becomes longer when it reaches point A
(D) The velocity of any pulse along the rope is independent of its frequency and wavelength.
5. One end of a taut string of length 3 m along the x -axis is fixed at $\mathrm{x}=0$. The speed of the waves in the string is $100 \mathrm{~ms}^{-1}$. The other end of the string is vibrating in the y direction so that stationary waves are set up in the string. The possible waveform (s) of these stationary waves is(are) :-
[JEE(Advanced) 2014]
(A) $y(t)=A \sin \frac{\pi x}{6} \cos \frac{50 \pi t}{3}$
(B) $y(t)=A \sin \frac{\pi x}{3} \cos \frac{100 \pi t}{3}$
(C) $\mathrm{y}(\mathrm{t})=\mathrm{A} \sin \frac{5 \pi \mathrm{x}}{6} \cos \frac{250 \pi \mathrm{t}}{3}$
(D) $\mathrm{y}(\mathrm{t})=\mathrm{A} \sin \frac{5 \pi \mathrm{x}}{2} \cos 250 \pi \mathrm{t}$

SOLUTIONS

1. Ans. (5)

Sol. $\mathrm{f}=\frac{\mathrm{P}}{2 \ell} \sqrt{\frac{\mathrm{~T}}{\mu}}$

$$
\begin{align*}
& 750=\frac{\mathrm{P}}{2} \sqrt{\frac{\mathrm{~T}}{\mu}} \tag{1}\\
& 1000=\frac{\mathrm{P}+1}{2} \sqrt{\frac{\mathrm{~T}}{\mu}} \tag{2}
\end{align*}
$$

$\frac{4}{3}=\frac{P+1}{P}$
$\therefore \mathrm{P}=3$
$\Rightarrow 1000=\frac{4}{2} \sqrt{\frac{\mathrm{~T}}{2 \times 10^{-5}}} \quad \therefore \mathrm{~T}=5 \mathrm{~N}$
2. Ans. (A)

Sol. For fundamental mode

$\frac{\lambda}{2}=\mathrm{L} \quad \Rightarrow \lambda=2 \mathrm{~L}$
$\mathrm{f}=\frac{\mathrm{V}}{\lambda}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{\mu}}$
For string (1)
$\mathrm{f}_{0}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{\mu}} \Rightarrow(\mathrm{P})$
For string (2)

$$
\mathrm{f}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{2 \mu}}=\frac{\mathrm{f}_{0}}{\sqrt{2}} \Rightarrow(\mathrm{R})
$$

For string (3)

$$
\mathrm{f}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{3 \mu}}=\frac{\mathrm{f}_{0}}{\sqrt{3}} \Rightarrow(\mathrm{~S})
$$

For string (4)

$$
\mathrm{f}=\frac{1}{2 \mathrm{~L}} \sqrt{\frac{\mathrm{~T}}{4 \mu}}=\frac{\mathrm{f}_{0}}{2} \Rightarrow(\mathrm{Q})
$$

3. Ans. (A)

Sol. For string (1)
Length of string $=\mathrm{L}_{0}$
It is vibrating in $\mathrm{I}^{\text {st }}$ harmonic i.e. fundamental mode.

$\mathrm{f}_{0}=\frac{1}{2 \mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{0}}{\mu}} \Rightarrow(\mathrm{P})$
For string (2)
Length of string $=\frac{3 \mathrm{~L}_{0}}{2}$
It is vibrating in $\mathrm{III}^{\text {rd }}$ harmonic but frequency is still f_{0}.
$\mathrm{f}_{0}=\frac{3 \mathrm{v}}{2 \mathrm{~L}}$

$\mathrm{f}_{0}=\frac{3}{2\left(\frac{3 \mathrm{~L}_{0}}{2}\right)} \sqrt{\frac{\mathrm{T}_{2}}{2 \mu}}$
$\Rightarrow \mathrm{f}_{0}=\frac{1}{\mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{2}}{2 \mu}}=\frac{1}{2 \mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{0}}{\mu}}$
$\Rightarrow \mathrm{T}_{2}=\frac{\mathrm{T}_{0}}{2} \Rightarrow(\mathrm{Q})$
For string (3)
Length of string $=\frac{5 \mathrm{~L}_{0}}{4}$
It is vibrating in $5^{\text {th }}$ harmonic but frequency is still f_{0}.
$\mathrm{f}_{0}=\frac{5 \mathrm{~V}}{2 \mathrm{~L}}$

$\Rightarrow \mathrm{f}_{0}=\frac{5}{2\left(\frac{5 \mathrm{~L}_{0}}{4}\right)} \sqrt{\frac{\mathrm{T}_{3}}{3 \mu}}=\frac{1}{2 \mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{0}}{\mu}}$
$\Rightarrow \frac{2}{\mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{3}}{3 \mu}}=\frac{1}{2 \mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{0}}{\mu}}$

$$
\mathrm{T}_{3}=\frac{3 \mathrm{~T}_{0}}{16} \Rightarrow(\mathrm{~T})
$$

For string (4)
Length of string $=\frac{7 \mathrm{~L}_{0}}{4}$
It is vibrating in $14^{\text {th }}$ harmonic but frequency is still f_{0}.

$$
\mathrm{f}_{0}=\frac{14 \mathrm{v}}{2 \mathrm{~L}}
$$

$\Rightarrow \mathrm{f}_{0}=\frac{14}{2\left(\frac{7 \mathrm{~L}_{0}}{4}\right)} \sqrt{\frac{\mathrm{T}_{4}}{4 \mu}}=\frac{1}{2 \mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{0}}{\mu}}$
$\Rightarrow \frac{4}{\mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{4}}{4 \mu}}=\frac{1}{2 \mathrm{~L}_{0}} \sqrt{\frac{\mathrm{~T}_{0}}{\mu}} \Rightarrow \mathrm{~T}_{4}=\frac{\mathrm{T}_{0}}{16} \Rightarrow(\mathrm{U})$
4. Ans. (A, D)

Sol.

(A) Speed of wave is property of medium so time taken to cross the string will be equal
(B) Speeds are same but velocity is vector, has opposite directions
(C) Wavelength $\lambda=\frac{\mathrm{v}}{\mathrm{f}}=\frac{1}{\mathrm{f}} \sqrt{\frac{\mathrm{T}}{\mu}}$ and $\mathrm{T}_{\mathrm{O}}>\mathrm{T}_{\mathrm{A}}$
(D) Velocity of any pulse is $v=\sqrt{\frac{T}{\mu}}$ and it is property of medium.
5. Ans. (A, C, D)

At $x=0 \quad y=0$
Sol. $x=3 \quad y \neq 0$ The equation satisfying all $\frac{\omega}{\mathrm{k}}=100 \mathrm{~m} / \mathrm{s}$
three conditions is correct. Hence answer ACD

