VECTOR

1. Two vectors \vec{A} and \vec{B} are defined as $\vec{A}=a \hat{i}$ and $\vec{B}=a(\cos \omega t \hat{i}+\sin \omega t \hat{j})$, where a is a constant and $\omega=\pi / 6 \mathrm{rad} \mathrm{s}^{-1}$. If $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=\sqrt{3}|\overrightarrow{\mathrm{~A}}-\overrightarrow{\mathrm{B}}|$ at time $\mathrm{t}=\tau$ for the first time, the value of τ, in seconds, is \qquad .
[JEE(Advanced) 2018]
2. Three vectors \vec{P}, \vec{Q} and \vec{R} are shown in the figure. Let S be any point on the vector \vec{R}. The distance between the points P and S is $b|\vec{R}|$. The general relation among vectors \vec{P}, \vec{Q} and \vec{S} is :
[JEE(Advanced) 2017]

(A) $\overrightarrow{\mathrm{S}}=(1-\mathrm{b}) \overrightarrow{\mathrm{P}}+\mathrm{b}^{2} \overrightarrow{\mathrm{Q}}$
(B) $\overrightarrow{\mathrm{S}}=(\mathrm{b}-1) \overrightarrow{\mathrm{P}}+\mathrm{b} \overrightarrow{\mathrm{Q}}$
(C) $\overrightarrow{\mathrm{S}}=(1-\mathrm{b}) \overrightarrow{\mathrm{P}}+\mathrm{b} \overrightarrow{\mathrm{Q}}$
(D) $\overrightarrow{\mathrm{S}}=\left(1-\mathrm{b}^{2}\right) \overrightarrow{\mathrm{P}}+\mathrm{b} \overrightarrow{\mathrm{Q}}$

SOLUTIONS

1. Ans. (2.00)

Sol. $|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{a} \cos \frac{\omega \mathrm{t}}{2}$
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 \mathrm{a} \sin \frac{\omega \mathrm{t}}{2}$

So
$2 \mathrm{a} \cos \frac{\omega \mathrm{t}}{2}=\sqrt{3}\left(2 \mathrm{a} \sin \frac{\omega \mathrm{t}}{2}\right)$
$\tan \frac{\omega \mathrm{t}}{2}=\frac{1}{\sqrt{3}}$
$\frac{\omega \mathrm{t}}{2}=\frac{\pi}{6} \Rightarrow \omega \mathrm{t}=\frac{\pi}{3}$
$\frac{\pi}{6} t=\frac{\pi}{3} \quad t=2.00 \sec$
2. Ans. (C)

Sol. Let vector from point P to point S be $\overrightarrow{\mathrm{C}}$

$$
\begin{aligned}
& \Rightarrow \overrightarrow{\mathrm{C}}=\mathrm{b}|\overrightarrow{\mathrm{R}}| \hat{\mathrm{R}}=\mathrm{b}|\overrightarrow{\mathrm{R}}|\left(\frac{\overrightarrow{\mathrm{R}}}{|\overrightarrow{\mathrm{R}}|}\right) \\
& =\mathrm{b} \overrightarrow{\mathrm{R}}=\mathrm{b}(\overrightarrow{\mathrm{Q}}-\overrightarrow{\mathrm{P}})
\end{aligned}
$$

from triangle rule of vector addition $\overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{S}}$
$\overrightarrow{\mathrm{P}}+\mathrm{b}(\overrightarrow{\mathrm{Q}}-\overrightarrow{\mathrm{P}})=\overrightarrow{\mathrm{S}} \Rightarrow \overrightarrow{\mathrm{S}}=(1-\mathrm{b}) \overrightarrow{\mathrm{P}}+\mathrm{b} \overrightarrow{\mathrm{Q}}$

