GRAVITATION

1. Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are h_{P} and h_{Q}, respectively, where $h_{p}=R / 3$. The accelerations of P and Q due to Earth's gravity are g_{P} and g_{Q}, respectively. If $g_{P} / g_{Q}=36 / 25$, what is the value of h_{Q} ?
[JEE(Advanced) 2023]
(A) $3 \mathrm{R} / 5$
(B) $\mathrm{R} / 6$
(C) $6 R / 5$
(D) $5 \mathrm{R} / 6$
2. Two spherical stars A and B have densities ρ_{A} and ρ_{B}, respectively. A and B have the same radius, and their masses M_{A} and M_{B} are related by $M_{B}=2 M_{A}$. Due to an interaction process, star A loses some of its mass, so that its radius is halved, while its spherical shape is retained, and its density remains ρ_{A}. The entire mass lost by A is deposited as a thick spherical shell on B with the density of the shell being ρ_{A}. If v_{A} and v_{B} are the escape velocities from A and B after the interaction process, the ratio $\frac{v_{B}}{v_{A}}=\sqrt{\frac{10 n}{15^{1 / 3}}}$. The value of n is \qquad .
[JEE(Advanced) 2022]
3. The distance between two stars of masses $3 M_{S}$ and $6 \mathrm{M}_{\mathrm{S}}$ is $9 R$. Here R is the mean distance between the centers of the Earth and the Sun, and M_{S} is the mass of the Sun. The two stars orbit around their common center of mass in circular orbits with period nT, where T is the period of Earth's revolution around the Sun. The value of n is \qquad _.
[JEE(Advanced) 2021]
4. Consider a spherical gaseous cloud of mass density $\rho(\mathrm{r})$ in free space where r is the radial distance from its center. The gaseous cloud is made of particles of equal mass moving in circular orbits about the common center with the same kinetic energy K . The force acting on the particles is their mutual gravitational force. If $\rho(\mathrm{r})$ is constant in time, the particle number density $\mathrm{n}(\mathrm{r})=\rho(\mathrm{r}) / \mathrm{m}$ is :
[G is universal gravitational constant]
[JEE(Advanced) 2019]
(A) $\frac{K}{\pi r^{2} m^{2} G}$
(B) $\frac{K}{6 \pi r^{2} m^{2} G}$
(C) $\frac{3 \mathrm{~K}}{\pi \mathrm{r}^{2} \mathrm{~m}^{2} G}$
(D) $\frac{\mathrm{K}}{2 \pi \mathrm{r}^{2} \mathrm{~m}^{2} G}$
5. A planet of mass M, has two natural satellites with masses m_{1} and m_{2}. The radii of their circular orbits are R_{1} and R_{2} respectively. Ignore the gravitational force between the satellites. Define $\mathrm{v}_{1}, L_{1}, \mathrm{~K}_{1}$ and T_{1} to be, respectively, the orbital speed, angular momentum, kinetic energy and time period of revolution of satellite 1 ; and v_{2}, L_{2}, K_{2} and T_{2} to be the corresponding quantities of satellite 2 . Given $m_{1} / m_{2}=2$ and $\mathrm{R}_{1} / \mathrm{R}_{2}=1 / 4$, match the ratios in List-I to the numbers in List-II.
[JEE(Advanced) 2018]

List-I

P. $\frac{v_{1}}{v_{2}}$

List-II

(1) $\frac{1}{8}$
Q. $\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}$
R. $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}$
S. $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}$
(A) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 2 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$
(C) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
(D) $\mathrm{P} \rightarrow 2 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 4 ; \mathrm{S} \rightarrow 1$
6. A rocket is launched normal to the surface of the Earth, away from the Sun, along the line joining the sun and the Earth. The Sun is 3×10^{5} times heavier than the Earth and is at a distance 2.5×10^{4} times larger than the radius of the Earth. The escape velocity from Earth's gravitational field is $\mathrm{v}_{\mathrm{e}}=11.2 \mathrm{~km} \mathrm{~s}^{-1}$. The minimum initial velocity $\left(\mathrm{v}_{\mathrm{s}}\right)$ required for the rocket to be able to leave the Sun-Earth system is closest to (Ignore the rotation and revolution of the Earth and the presence of any other planet)
[JEE(Advanced) 2017]
(A) $\mathrm{v}_{\mathrm{s}}=22 \mathrm{~km} \mathrm{~s}^{-1}$
(B) $\mathrm{v}_{\mathrm{s}}=72 \mathrm{~km} \mathrm{~s}^{-1}$
(C) $\mathrm{v}_{\mathrm{S}}=42 \mathrm{~km} \mathrm{~s}^{-1}$
(D) $\mathrm{v}_{\mathrm{s}}=62 \mathrm{~km} \mathrm{~s}^{-1}$
7. A bullet is fired vertically upwards with velocity v from the surface of a spherical planet. When it reaches its maximum height, its acceleration due to the planet's gravity is $1 / 4^{\text {th }}$ of its value at the surface of the planet. If the escape velocity from the planet is $\mathrm{v}_{\text {esc }}=\mathrm{v} \sqrt{\mathrm{N}}$, then the value of N is (ignore energy loss due to atmosphere)
[JEE(Advanced) 2015]
8. A large spherical mass M is fixed at one position and two identical point masses m are kept on a line passing through the centre of M (see figure). The point masses are connected by a rigid massless rod of length ℓ and this assembly is free to move along the line connecting them. All three masses interact only through their mutual gravitational interaction. When the point mass nearer to M is at a distance $\mathrm{r}=3 \ell$ from M, the tension in the rod is zero for $m=k\left(\frac{M}{288}\right)$. The value of k is:
[JEE(Advanced) 2015]

9. A spherical body of radius R consists of a fluid of constant density and is in equilibrium under its own gravity. If $\mathrm{P}(\mathrm{r})$ is the pressure at $\mathrm{r}(\mathrm{r}<\mathrm{R})$, then the correct option(s) is(are) :-
[JEE(Advanced) 2015]
(A) $\mathrm{P}(\mathrm{r}=0)=0$
(B) $\frac{\mathrm{P}(\mathrm{r}=3 \mathrm{R} / 4)}{\mathrm{P}(\mathrm{r}=2 \mathrm{R} / 3)}=\frac{63}{80}$
(C) $\frac{\mathrm{P}(\mathrm{r}=3 \mathrm{R} / 5)}{\mathrm{P}(\mathrm{r}=2 \mathrm{R} / 5)}=\frac{16}{21}$
(D) $\frac{\mathrm{P}(\mathrm{r}=\mathrm{R} / 2)}{\mathrm{P}(\mathrm{r}=\mathrm{R} / 3)}=\frac{20}{27}$
10. A planet of radius $\mathrm{R}=\frac{1}{10} \times$ (radius of Earth) has the same mass density as Earth. Scientists dig a well of depth $\frac{\mathrm{R}}{5}$ on it and lower a wire of the same length and of linear mass density $10^{-3} \mathrm{kgm}^{-3}$ into it. If the wire is not touching anywhere, the force applied at the top of the wire by a person holding it in place is (take the radius of Earth $=6 \times 10^{6} \mathrm{~m}$ and the acceleration due to gravity on Earth is $10 \mathrm{~ms}^{-2}$)
[JEE(Advanced) 2014]
(A) 96 N
(B) 108 N
(C) 120 N
(D) 150 N

SOLUTIONS

1. Ans. (A)

Sol.

$\frac{g_{\mathrm{P}}}{\mathrm{g}_{\mathrm{Q}}}=\frac{\frac{\mathrm{GM}}{\mathrm{r}_{\mathrm{p}}^{2}}}{\frac{\mathrm{GM}}{\mathrm{r}_{\mathrm{Q}}^{2}}}=\left(\frac{\mathrm{r}_{\mathrm{Q}}}{\mathrm{r}_{\mathrm{P}}}\right)^{2}$
$\frac{36}{25}=\left(\frac{\mathrm{r}_{\mathrm{Q}}}{\mathrm{r}_{\mathrm{P}}}\right)^{2} ; \frac{\mathrm{r}_{\mathrm{Q}}}{\mathrm{r}_{\mathrm{p}}}=\frac{6}{5}$
$r_{Q}=\frac{6}{5} r_{P}$
$\mathrm{R}+\mathrm{h}_{\mathrm{Q}}=\frac{6}{5}\left(\mathrm{R}+\frac{\mathrm{R}}{3}\right)$
$\mathrm{h}_{\mathrm{Q}}=\frac{24}{15} \mathrm{R}-\mathrm{R}=\frac{9}{15} \mathrm{R}=\frac{3}{5} \mathrm{R}$
2. Ans. (2.2-2.4)

Sol. Given $R_{A}=R_{B}=R$
$\mathrm{M}_{\mathrm{B}}=2 \mathrm{M}_{\mathrm{A}}$
Calculation of escape velocity for A:
Radius of remaining star $=\frac{\mathrm{R}_{\mathrm{A}}}{2}$.
Mass of remaining star $=\rho_{\mathrm{A}} \frac{4}{3} \pi \frac{\mathrm{R}_{\mathrm{A}}^{3}}{8}=\frac{\mathrm{M}_{\mathrm{A}}}{8}$
$\frac{-\mathrm{GM}_{\mathrm{AB}}}{\mathrm{R}_{\mathrm{A} / 2}}+\frac{1}{2} \mathrm{mv}_{\mathrm{A}}^{2}=0$
$\Rightarrow \mathrm{v}_{\mathrm{A}}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{A} / \mathrm{B}}}{\mathrm{R}_{\mathrm{A} / 2}}}=\sqrt{\frac{\mathrm{GM}_{\mathrm{A}}}{2 \mathrm{R}}}$
Calculation of escape velocity for B
Mass collected over $B=\frac{7}{8} M_{A}$
Let the radius of B becomes r.
$\therefore \frac{4}{3} \pi\left(\mathrm{r}^{3}-\mathrm{R}_{\mathrm{B}}^{3}\right) \rho_{\mathrm{A}}=\frac{7}{8} \rho_{\mathrm{A}} \frac{4}{3} \pi \mathrm{R}_{\mathrm{A}}^{3}$
$\Rightarrow \pi^{3}=\frac{7}{8} \mathrm{R}_{\mathrm{R}}^{3}+\mathrm{R}_{\mathrm{B}}^{3}=\frac{(15)^{1 / 3} \mathrm{R}}{2}$
$\therefore \frac{\mathrm{V}_{\mathrm{B}}^{2}}{2}=\frac{23 \mathrm{GM}_{\mathrm{A}}}{8 \times 15^{1 / 3} \frac{\mathrm{R}}{2}}=\frac{23 \mathrm{GM}_{\mathrm{A}}}{4 \times 15^{1 / 3} \mathrm{R}}$
$\therefore \mathrm{V}_{\mathrm{B}}=\sqrt{\frac{23 \mathrm{GM}_{\mathrm{A}}}{2 \times 15^{1 / 3} \mathrm{R}}}$
$\therefore \frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{A}}}=\sqrt{\frac{23}{15^{1 / 3}}}=\sqrt{\frac{10 \times 2.30}{15^{1 / 3}}}$
$\mathrm{n}=2.30$
3. Ans. (9)

Sol. Circular orbits
$\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{R}^{2}}{\mathrm{GM}_{\mathrm{S}}}}$
Binary stars
$\mathrm{nT}=2 \pi \sqrt{\frac{(9 \mathrm{R})^{3}}{\mathrm{G}\left(3 \mathrm{M}_{\mathrm{S}}+6 \mathrm{M}_{\mathrm{S}}\right)}}$
$\mathrm{n} \times 2 \pi \sqrt{\frac{\mathrm{R}^{3}}{\mathrm{GM}_{\mathrm{S}}}}=9 \times 2 \pi \sqrt{\frac{\mathrm{R}^{3}}{\mathrm{GM}_{\mathrm{S}}}}$
$\mathrm{n}=9$
4. Ans. (D)

Sol. Let total mass included in a sphere of radius r be M.

For a particle of mass m,

$$
\begin{array}{ll}
& \frac{\mathrm{GMm}}{\mathrm{r}^{2}}=\frac{\mathrm{mv}^{2}}{\mathrm{r}} \\
\Rightarrow \quad & \frac{\mathrm{GMm}}{\mathrm{r}}=2 \mathrm{~K} \\
\Rightarrow \quad & \mathrm{M}=\frac{2 \mathrm{Kr}}{\mathrm{Gm}} \\
\therefore \quad & \mathrm{dM}=\frac{2 \mathrm{Kdr}}{\mathrm{Gm}} \\
\Rightarrow \quad & \left(4 \pi \mathrm{r}^{2} \mathrm{dr}\right) \rho=\frac{2 \mathrm{Kdr}}{\mathrm{Gm}} \\
\Rightarrow \quad & \rho=\frac{\mathrm{K}}{2 \pi \mathrm{r}^{2} \mathrm{Gm}} \\
\therefore \quad & \mathrm{n}=\frac{\rho}{\mathrm{m}}=\frac{\mathrm{K}}{2 \pi r^{2} \mathrm{~m}^{2} \mathrm{G}}
\end{array}
$$

5. Ans. (B)

Sol.

$\frac{\mathrm{GMm}_{1}}{\mathrm{R}_{1}^{2}}=\frac{\mathrm{m}_{1} \mathrm{v}_{1}^{2}}{\mathrm{R}_{1}}$
$\mathrm{v}_{1}^{2}=\frac{\mathrm{GM}}{\mathrm{R}_{1}}, \mathrm{v}_{2}^{2}=\frac{\mathrm{GM}}{\mathrm{R}_{2}}$
$\frac{v_{1}^{2}}{v_{2}^{2}}=\frac{R_{2}}{R_{1}}=4$
(P) $\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=2$
(Q) $\mathrm{L}=\mathrm{mvR}$
$\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}}=\frac{\mathrm{m}_{1} \mathrm{v}_{1} \mathrm{R}_{1}}{\mathrm{~m}_{2} \mathrm{v}_{2} \mathrm{R}_{2}}=2 \times 2 \times \frac{1}{4}=1$
(R) $\mathrm{K}=\frac{1}{2} \mathrm{mv}^{2}$

$$
\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{\mathrm{m}_{1} \mathrm{v}_{1}^{2}}{\mathrm{~m}_{2} \mathrm{v}_{2}^{2}}=2 \times(2)^{2}=8
$$

(S) $T=2 \pi R / V$

$$
\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{v}_{1}} \times \frac{\mathrm{v}_{2}}{\mathrm{R}_{2}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \times \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\frac{1}{4} \times \frac{1}{2}=\frac{1}{8}
$$

6. Ans. (C)

Sol. Given $\mathrm{v}_{\mathrm{e}}=11.2 \mathrm{~km} / \mathrm{sec}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}}$
From energy conservation
$\frac{1}{2} \mathrm{mv}_{\mathrm{s}}^{2}-\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{m}}{\mathrm{r}}-\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{R}_{\mathrm{e}}}=0-0$
where, $r=$ distance of rocket from Sun
$\Rightarrow \mathrm{v}_{\mathrm{s}}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}+\frac{2 \mathrm{GM}_{\mathrm{s}}}{\mathrm{r}}}$
given : $M_{s}=3 \times 10^{5} M_{e} \& r=2.5 \times 10^{4} R_{e}$
$\Rightarrow \mathrm{v}_{\mathrm{s}}=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}+\frac{2 \mathrm{G} 3 \times 10^{5} \mathrm{M}_{\mathrm{e}}}{2.5 \times 10^{4} \mathrm{R}_{\mathrm{e}}}}$
$=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}\left(1+\frac{3 \times 10^{5}}{2.5 \times 10^{4}}\right)}$
$=\sqrt{\frac{2 \mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}} \times 13}$

$$
\Rightarrow \mathrm{v}_{\mathrm{s}} \simeq 42 \mathrm{~km} / \mathrm{s}
$$

7. Ans. (2)

Sol. $g^{\prime}=\frac{g}{\left(1+\frac{h}{R}\right)^{2}}=\frac{g}{4}$
$1+\frac{\mathrm{h}}{\mathrm{R}}=2$

$h=R$
So velocity of particle becomes zero at $\mathrm{h}=\mathrm{R}$ given $v_{\text {esc }}=v \sqrt{\mathrm{~N}}$
so $\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}=v \sqrt{\mathrm{~N}}$
Applying conservation of energy
$\frac{-\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{~m} v^{2}=-\frac{\mathrm{GMm}}{2 \mathrm{R}}+0$
on solving
$v^{2}=\frac{\mathrm{GM}}{\mathrm{R}}$
so $v=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}}$ putting in equation (ii)
$\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}=\sqrt{\frac{\mathrm{GM}}{\mathrm{R}}} \sqrt{\mathrm{N}}$
comparing $\mathrm{N}=2$
8. Ans. (7)

Sol. Due to gravitational interaction connected masses have some acceleration.
Let both small masses are moving with acceleration ' a ' towards larger mass M

Force eq. for mass nearer to larger mass
$\frac{\mathrm{GMm}}{(3 \ell)^{2}}-\frac{\mathrm{Gm}^{2}}{\ell^{2}}=\mathrm{ma}$
Force eq. for mass away from larger mass
$\frac{\mathrm{GMm}}{(4 \ell)^{2}}+\frac{\mathrm{Gm}^{2}}{\ell^{2}}=\mathrm{ma}$
from equation (i) \& (ii)
$\frac{\mathrm{GM}}{9 \ell^{2}}-\frac{\mathrm{Gm}}{\ell^{2}}=\frac{\mathrm{GM}}{16 \ell^{2}}+\frac{\mathrm{Gm}}{\ell^{2}}$
$\Rightarrow \frac{M}{9}-\frac{M}{16}=m+m \quad \Rightarrow \frac{7 M}{144}=2 m$
$\Rightarrow \mathrm{m}=\frac{7 \mathrm{M}}{288}=\mathrm{k}\left(\frac{\mathrm{M}}{288}\right) \Rightarrow \mathrm{K}=7$
9. Ans. (B, C)

Sol.

$$
\begin{aligned}
& d F=[P-(P+d P)] A \\
& \Rightarrow \frac{G m}{r^{2}} d m=-(d P) A \\
& \Rightarrow \int_{0}^{P} d P=-\int_{R}^{r} \frac{G \frac{\mathrm{Mr}^{3}}{R^{3}} 4 \mathrm{ar}^{2} \mathrm{dr} \mathrm{\rho}}{\mathrm{r}^{2}\left(4 \pi r^{2}\right)} \\
& \therefore \mathrm{P}=\frac{\mathrm{G} \rho \mathrm{M}}{2 \mathrm{R}}\left(1-\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}\right)
\end{aligned}
$$

10. Ans. (B)

Sol. $\quad \mathrm{E}_{\mathrm{G}}=\frac{4 \pi \mathrm{Gr} \rho}{3}$
$\mathrm{dF}=\mathrm{E}_{\mathrm{G}} \lambda \mathrm{dr}$
$\mathrm{F}=\int_{\frac{4 \mathrm{R}}{5}}^{\mathrm{R}} \frac{4 \pi \mathrm{G} \rho \lambda}{3} \mathrm{rdr}=\frac{4 \pi \mathrm{G} \rho \lambda}{3}\left[\frac{\mathrm{r}^{2}}{2}\right]_{\frac{4 \mathrm{R}}{5}}^{\mathrm{R}}$
$=\frac{4 \pi \mathrm{G} \rho \lambda}{3 \times 2}\left[\mathrm{R}^{2}-\frac{16 \mathrm{R}^{2}}{25}\right]=\frac{4 \pi}{6} \mathrm{G} \rho \lambda \times \frac{9}{25} \mathrm{R}^{2}$
$\mathrm{F}=\frac{4 \pi}{6} \mathrm{G} \times \frac{\mathrm{M}}{\frac{4 \pi}{3} \mathrm{R}_{\mathrm{e}}^{3}} \times \lambda \times \frac{9}{25} \times \frac{\mathrm{R}_{\mathrm{e}}^{2}}{100}$
After solving $[\mathrm{F} \Rightarrow 108 \mathrm{~N}]$

