ALLEN[®]

JEE Advanced Physics 10 Years Topicwise Questions with Solutions

GRAVITATION

1. Two satellites P and Q are moving in different circular orbits around the Earth (radius R). The heights of P and Q from the Earth surface are h_P and h_Q , respectively, where $h_p = R/3$. The accelerations of P and Q due to Earth's gravity are g_P and g_Q , respectively. If $g_P/g_Q = 36/25$, what is the value of h_Q ?

[JEE(Advanced) 2023]

(A) 3R/5 (B) R/6 (C) 6R/5 (D) 5R/6

2. Two spherical stars A and B have densities ρ_A and ρ_B , respectively. A and B have the same radius, and their masses M_A and M_B are related by $M_B = 2M_A$. Due to an interaction process, star A loses some of its mass, so that its radius is halved, while its spherical shape is retained, and its density remains ρ_A . The entire mass lost by A is deposited as a thick spherical shell on B with the density of the shell being ρ_A . If

 v_A and v_B are the escape velocities from A and B after the interaction process, the ratio $\frac{v_B}{v_A} = \sqrt{\frac{10n}{15^{1/3}}}$.

The value of n is _____

[JEE(Advanced) 2022]

- 3. The distance between two stars of masses 3M_S and 6M_S is 9R. Here R is the mean distance between the centers of the Earth and the Sun, and M_S is the mass of the Sun. The two stars orbit around their common center of mass in circular orbits with period nT, where T is the period of Earth's revolution around the Sun. The value of n is _____. [JEE(Advanced) 2021]
- 4. Consider a spherical gaseous cloud of mass density $\rho(r)$ in free space where r is the radial distance from its center. The gaseous cloud is made of particles of equal mass m moving in circular orbits about the common center with the same kinetic energy K. The force acting on the particles is their mutual gravitational force. If $\rho(r)$ is constant in time, the particle number density $n(r) = \rho(r)/m$ is : [G is universal gravitational constant] [JEE(Advanced) 2019]

(A)
$$\frac{K}{\pi r^2 m^2 G}$$
 (B) $\frac{K}{6\pi r^2 m^2 G}$ (C) $\frac{3K}{\pi r^2 m^2 G}$ (D) $\frac{K}{2\pi r^2 m^2 G}$

5. A planet of mass M, has two natural satellites with masses m_1 and m_2 . The radii of their circular orbits are R_1 and R_2 respectively. Ignore the gravitational force between the satellites. Define v_1 , L_1 , K_1 and T_1 to be, respectively, the orbital speed, angular momentum, kinetic energy and time period of revolution of satellite 1; and v_2 , L_2 , K_2 and T_2 to be the corresponding quantities of satellite 2. Given $m_1/m_2 = 2$ and $R_1/R_2 = 1/4$, match the ratios in List-I to the numbers in List-II. [JEE(Advanced) 2018]

	List–I	List-II
P.	$\frac{v_1}{v_2}$	(1) $\frac{1}{8}$
Q.	$\frac{L_1}{L_2}$	(2) 1
R.	$\frac{K_1}{K_2}$	(3) 2
S.	$\frac{T_1}{T_2}$	(4) 8
, í	$P \rightarrow 4; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 3$ $P \rightarrow 2; Q \rightarrow 3; R \rightarrow 1; S \rightarrow 4$	(B) $P \rightarrow 3$; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 1$ (D) $P \rightarrow 2$; $Q \rightarrow 3$; $R \rightarrow 4$; $S \rightarrow 1$

6. A rocket is launched normal to the surface of the Earth, away from the Sun, along the line joining the sun and the Earth. The Sun is 3×10^5 times heavier than the Earth and is at a distance 2.5×10^4 times larger than the radius of the Earth. The escape velocity from Earth's gravitational field is $v_e = 11.2$ km s⁻¹. The minimum initial velocity (v_s) required for the rocket to be able to leave the Sun-Earth system is closest to (Ignore the rotation and revolution of the Earth and the presence of any other planet)

[JEE(Advanced) 2017]

(A)
$$v_s = 22 \text{ km s}^{-1}$$
 (B) $v_s = 72 \text{ km s}^{-1}$

(C)
$$v_s = 42 \text{ km s}^{-1}$$
 (D) $v_s = 62 \text{ km s}^{-1}$

- 7. A bullet is fired vertically upwards with velocity v from the surface of a spherical planet. When it reaches its maximum height, its acceleration due to the planet's gravity is $1/4^{th}$ of its value at the surface of the planet. If the escape velocity from the planet is $v_{esc} = v\sqrt{N}$, then the value of N is (ignore energy loss due to atmosphere) [JEE(Advanced) 2015]
- 8. A large spherical mass M is fixed at one position and two identical point masses m are kept on a line passing through the centre of M (see figure). The point masses are connected by a rigid massless rod of length ℓ and this assembly is free to move along the line connecting them. All three masses interact only through their mutual gravitational interaction. When the point mass nearer to M is at a distance $r = 3\ell$

from M, the tension in the rod is zero for
$$m = k \left(\frac{M}{288}\right)$$
. The value of k is: [JEE(Advanced) 2015]

- A spherical body of radius R consists of a fluid of constant density and is in equilibrium under its own gravity. If P(r) is the pressure at r(r < R), then the correct option(s) is(are) :- [JEE(Advanced) 2015]
 - (A) P(r = 0) = 0 (B) $\frac{P(r = 3R/4)}{P(r = 2R/3)} = \frac{63}{80}$

(C)
$$\frac{P(r=3R/5)}{P(r=2R/5)} = \frac{16}{21}$$
 (D) $\frac{P(r=R/2)}{P(r=R/3)} = \frac{20}{27}$

10. A planet of radius $R = \frac{1}{10} \times$ (radius of Earth) has the same mass density as Earth. Scientists dig a well of depth $\frac{R}{5}$ on it and lower a wire of the same length and of linear mass density 10^{-3} kgm⁻³ into it. If the wire is not touching anywhere, the force applied at the top of the wire by a person holding it in place is (take the radius of Earth = 6×10^6 m and the acceleration due to gravity on Earth is 10 ms^{-2})

[JEE(Advanced) 2014]

(A) 96 N	(B) 108 N	(C) 120 N	(D) 150 N

ALLEN®

JEE Advanced Physics 10 Years Topicwise Questions with Solutions

$$\therefore \frac{V_B^2}{2} = \frac{23GM_A}{8 \times 15^{1/3} \frac{R}{2}} = \frac{23GM_A}{4 \times 15^{1/3} R}$$
$$\therefore V_B = \sqrt{\frac{23GM_A}{2 \times 15^{1/3} R}}$$
$$\therefore \frac{V_B}{V_A} = \sqrt{\frac{23}{15^{1/3}}} = \sqrt{\frac{10 \times 2.30}{15^{1/3}}}$$
$$n = 2.30$$

3. Ans. (9)

Sol. Circular orbits

$$T=2\pi\sqrt{\frac{R^2}{GM_S}}$$

Binary stars

$$nT = 2\pi \sqrt{\frac{(9R)^3}{G(3M_s + 6M_s)}}$$
$$n \times 2\pi \sqrt{\frac{R^3}{GM_s}} = 9 \times 2\pi \sqrt{\frac{R^3}{GM_s}}$$
$$n = 9$$

4. Ans. (D)

Sol. Let total mass included in a sphere of radius r be M.

For a particle of mass m,

$$\frac{GMm}{r^2} = \frac{mv^2}{r}$$

$$\Rightarrow \quad \frac{GMm}{r} = 2K$$

$$\Rightarrow \quad M = \frac{2Kr}{Gm}$$

$$\therefore \quad dM = \frac{2Kdr}{Gm}$$

$$\Rightarrow \quad (4\pi r^2 dr)\rho = \frac{2Kdr}{Gm}$$

$$\Rightarrow \quad \rho = \frac{K}{2\pi r^2 Gm}$$

$$\therefore \quad n = \frac{\rho}{m} = \frac{K}{2\pi r^2 m^2 G}$$

JEE Advanced Physics 10 Years Topicwise Questions with Solutions

ALLEN®

7. Ans. (2) $\mathbf{v} = \mathbf{0}$ **Sol.** $g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2} = \frac{g}{4}$ h $1 + \frac{h}{R} = 2$ h = R...(i) So velocity of particle becomes zero at h = Rgiven $v_{\rm esc} = v\sqrt{N}$ so $\sqrt{\frac{2GM}{R}} = v\sqrt{N}$...(ii) Applying conservation of energy $\frac{-GMm}{R} + \frac{1}{2}mv^2 = -\frac{GMm}{2R} + 0$ on solving $v^2 = \frac{GM}{R}$ so $v = \sqrt{\frac{GM}{R}}$ putting in equation (ii) $\sqrt{\frac{2GM}{R}} = \sqrt{\frac{GM}{R}}\sqrt{N}$ comparing N = 2Ans. (7) Sol. Due to gravitational interaction connected masses have some acceleration. Let both small masses are moving with acceleration 'a' towards larger mass M Μ m m $-3\ell \longrightarrow \ell \longrightarrow$ Force eq. for mass nearer to larger mass $\frac{\mathrm{GMm}}{(3\ell)^2} - \frac{\mathrm{Gm}^2}{\ell^2} = \mathrm{ma}$... (i) $\overline{(3\ell)^2}$ Force eq. for mass away from larger mass $\frac{\mathrm{GMm}}{\left(4\ell\right)^2} + \frac{\mathrm{Gm}^2}{\ell^2} = \mathrm{ma}$... (ii) from equation (i) & (ii) $\frac{\mathrm{GM}}{9\ell^2} - \frac{\mathrm{Gm}}{\ell^2} = \frac{\mathrm{GM}}{16\ell^2} + \frac{\mathrm{Gm}}{\ell^2}$

8.

$$\Rightarrow \frac{M}{9} - \frac{M}{16} = m + m \qquad \Rightarrow \frac{7M}{144} = 2m$$
$$\Rightarrow m = \frac{7M}{288} = k \left(\frac{M}{288}\right) \qquad \Rightarrow K = 7$$

4

ALLEN[®]

JEE Advanced Physics 10 Years Topicwise Questions with Solutions

10. Ans. (B)
Sol.
$$E_{G} = \frac{4\pi Gr\rho}{3}$$

 $dF = E_{G}\lambda dr$
 $F = \int_{\frac{4R}{5}}^{R} \frac{4\pi G\rho\lambda}{3} r dr = \frac{4\pi G\rho\lambda}{3} \left[\frac{r^{2}}{2}\right]_{\frac{4R}{5}}^{R}$
 $= \frac{4\pi G\rho\lambda}{3\times 2} \left[R^{2} - \frac{16R^{2}}{25}\right] = \frac{4\pi}{6} G\rho\lambda \times \frac{9}{25}R^{2}$
 $F = \frac{4\pi}{6}G \times \frac{M}{\frac{4\pi}{3}R_{e}^{3}} \times \lambda \times \frac{9}{25} \times \frac{R_{e}^{2}}{100}$

After solving $[F \Rightarrow 108 \text{ N}]$