ELASTICITY

1. A block of weight 100 N is suspended by copper and steel wires of same cross sectional area $0.5 \mathrm{~cm}^{2}$ and, length $\sqrt{3} \mathrm{~m}$ and 1 m , respectively. Their other ends are fixed on a ceiling as shown in figure. The angles subtended by copper and steel wires with ceiling are 30° and 60°, respectively. If elongation in copper wire is $\left(\Delta \ell_{\mathrm{C}}\right)$ and elongation in steel wire is $\left(\Delta \ell_{\mathrm{S}}\right)$, then the ratio $\frac{\Delta \ell_{\mathrm{C}}}{\Delta \ell_{\mathrm{S}}}$ is \qquad . [Young's modulus for copper and steel are $1 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$ respectively]
[JEE(Advanced) 2019]

2. In plotting stress versus strain curves for two materials P and Q, a student by mistake puts strain on the y-axis and stress on the x-axis as shown in the figure. Then the correct statement(s) is (are) :-
[JEE(Advanced) 2015]

(A) P has more tensile strength than Q
(B) P is more ductile than Q
(C) P is more brittle than Q
(D) The Young's modulus of P is more than that of Q

SOLUTIONS

1. Ans. (2.00)

Sol. Let $\mathrm{T}_{\mathrm{S}}=$ tension in steel wire
$\mathrm{T}_{\mathrm{C}}=$ Tension in copper wire
in x direction
$\mathrm{T}_{\mathrm{C}} \cos 30^{\circ}=\mathrm{T}_{\mathrm{S}} \cos 60^{\circ}$
$\mathrm{T}_{\mathrm{C}} \times \frac{\sqrt{3}}{2}=\mathrm{T}_{\mathrm{S}} \times \frac{1}{2}$
$\sqrt{3} \mathrm{~T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{S}}$
in y direction
$\mathrm{T}_{\mathrm{C}} \sin 30^{\circ}+\mathrm{T}_{\mathrm{S}} \sin 60^{\circ}=100$
$\frac{T_{C}}{2}+\frac{T_{\mathrm{S}} \sqrt{3}}{2}=100$
Solving equation (i) \& (ii)
$\mathrm{T}_{\mathrm{C}}=50 \mathrm{~N}$
$\mathrm{T}_{\mathrm{S}}=50 \sqrt{3} \mathrm{~N}$
We know
$\Delta \mathrm{L}=\frac{\mathrm{FL}}{\mathrm{AY}}=\frac{\Delta \mathrm{L}_{\mathrm{C}}}{\Delta \mathrm{L}_{\mathrm{S}}}=\frac{\mathrm{T}_{\mathrm{C}} \mathrm{L}_{\mathrm{C}}}{\mathrm{A}_{\mathrm{C}} \mathrm{Y}_{\mathrm{C}}} \times \frac{\mathrm{A}_{\mathrm{S}} \mathrm{Y}_{\mathrm{S}}}{\mathrm{T}_{\mathrm{S}} \mathrm{L}_{\mathrm{S}}}$
On solving above equation
$\frac{\Delta \mathrm{L}_{\mathrm{C}}}{\Delta \mathrm{L}_{\mathrm{S}}}=2$
2. Ans. (A, B)

Sol. Slope of this graph represents the reciprocal of Young's modulus.
since Slope of $\mathrm{P}>$ Slope of Q
Hence Y of $\mathrm{P}<\mathrm{Y}$ of Q

