CIRCULAR MOTION

Paragraph for Question Nos. 1 and 2

A frame of reference that is accelerated with respect to an inertial frame of reference is called a non-inertial frame of reference. A coordinate system fixed on a circular disc rotating about a fixed axis with a constant angular velocity ω is an example of a non-inertial frame of reference. The relationship between the force $\overrightarrow{\mathrm{F}}_{\text {rot }}$ experienced by a particle of mass m moving on the rotating disc and the force $\overrightarrow{\mathrm{F}}_{\text {in }}$ experienced by the particle in an inertial frame of reference is $\vec{F}_{\text {rot }}=\vec{F}_{\text {in }}+2 m\left(\vec{v}_{\text {rot }} \times \vec{\omega}\right)+m(\vec{\omega} \times \vec{r}) \times \vec{\omega}$, where $\vec{v}_{\text {rot }}$ is the velocity of the particle in the rotating frame of reference and \vec{r} is the position vector of the particle with respect to the centre of the disc.
Now consider a smooth slot along a diameter of a disc of radius R rotating counter-clockwise with a constant angular speed ω about its vertical axis through its center. We assign a coordinate system with the origin at the centre of the disc, the x -axis along the slot, the y -axis perpendicular to the slot and the z-axis along the rotation axis $(\vec{\omega}=\omega \hat{k})$. A small block of mass m is gently placed in the slot at $\vec{r}=(R / 2) \hat{i}$ at $t=0$ and is constrained to move only along the slot.

1. The distance r of the block at time t is :

[JEE(Advanced) 2016]
(A) $\frac{\mathrm{R}}{4}\left(\mathrm{e}^{2 \omega \mathrm{t}}+\mathrm{e}^{-2 \omega \mathrm{t}}\right)$
(B) $\frac{R}{2} \cos 2 \omega t$
(C) $\frac{\mathrm{R}}{2} \cos \omega t$
(D) $\frac{\mathrm{R}}{4}\left(\mathrm{e}^{\omega \mathrm{t}}+\mathrm{e}^{-\omega \mathrm{t}}\right)$
2. The net reaction of the disc on the block is :
[JEE(Advanced) 2016]
(A) $-m \omega^{2} R \cos \omega \hat{\mathrm{j}}-m g \hat{\mathrm{k}}$
(B) $m \omega^{2} R \sin \omega t \hat{j}-m g \hat{k}$
(C) $\frac{1}{2} m \omega^{2} R\left(e^{\omega t}-e^{-\omega t}\right) \hat{j}+m g \hat{k}$
(D) $\frac{1}{2} m \omega^{2} R\left(e^{2 \omega t}-e^{-2 \omega t}\right) \hat{j}+m g \hat{k}$

SOLUTIONS

1. Ans. (D)

Sol. Force on block along slot $=m \omega^{2} r=m a$
$=m\left(\frac{\mathrm{vdv}}{\mathrm{dr}}\right) \Rightarrow \int_{0}^{\mathrm{v}} \mathrm{vdv}=\int_{\mathrm{R} / 2}^{\mathrm{r}} \omega^{2} \mathrm{rdr}$
$\frac{v^{2}}{2}=\frac{\omega^{2}}{2}\left(r^{2}-\frac{R^{2}}{4}\right) \Rightarrow v=\omega \sqrt{r^{2}-\frac{R^{2}}{4}}=\frac{d r}{d t}$
$\Rightarrow \int_{\mathrm{R} / 4}^{\mathrm{r}} \frac{\mathrm{dr}}{\sqrt{\mathrm{r}^{2}-\frac{\mathrm{R}^{2}}{4}}}=\int_{0}^{\mathrm{t}} \omega \mathrm{dt}$
$\ell n\left(\frac{r+\sqrt{r^{2}-\frac{R^{2}}{4}}}{\frac{R}{2}}\right)-\ln \left(\frac{R / 2+\sqrt{\frac{R^{2}}{4}-\frac{R^{2}}{4}}}{\frac{R}{2}}\right)=\omega t$
$\Rightarrow r+\sqrt{r^{2}-\frac{R^{2}}{4}}=\frac{R}{2} e^{\omega t}$
$\Rightarrow r^{2}-\frac{R^{2}}{4}=\frac{R^{2}}{4} e^{2 \omega t}+r^{2}-2 r \frac{R}{2} e^{\omega t}$
$\Rightarrow r=\frac{\frac{\mathrm{R}^{2}}{4} e^{2 \omega t}+\frac{\mathrm{R}^{2}}{4}}{\operatorname{Re}^{\omega t}}=\frac{\mathrm{R}}{4}\left(\mathrm{e}^{\omega \mathrm{t}}+\mathrm{e}^{-\omega \mathrm{t}}\right)$
2. Ans. (C)

Sol.

Total reaction on block $=\overrightarrow{\mathrm{N}}_{1}+\overrightarrow{\mathrm{N}}_{2}$
$=\frac{1}{2} m \omega^{2} R\left(e^{\omega t}-e^{-\omega t}\right) \hat{j}+m g \hat{k}$

