VECTOR

1. Let P be the plane $\sqrt{3} x+2 y+3 z=16$ and let

$$
S=\left\{\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}}: \alpha^{2}+\beta^{2}+\gamma^{2}=1 \text { and the distance of }(\alpha, \beta, \gamma) \text { from the plane } \mathrm{P} \text { is } \frac{7}{2}\right\}
$$

Let $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$ be three distinct vectors in S such that $|\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{v}}|=|\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}}|=|\overrightarrow{\mathrm{w}}-\overrightarrow{\mathrm{u}}|$.
Let V be the volume of the parallelepiped determined by vectors $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$. Then the value of $\frac{80}{\sqrt{3}} \mathrm{~V}$ is
[JEE(Advanced) 2023]
2. Let the position vectors of the points P, Q, R and S be $\overrightarrow{\mathrm{a}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-5 \hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}, \overrightarrow{\mathrm{c}}=\frac{17}{5} \hat{\mathrm{i}}+\frac{16}{5} \hat{j}+7 \hat{\mathrm{k}}$ and $\vec{d}=2 \hat{i}+\hat{j}+\hat{k}$, respectively. Then which of the following statements is true?
[JEE(Advanced) 2023]
(A) The points P, Q, R and S are NOT coplanar
(B) $\frac{\vec{b}+2 \vec{d}}{3}$ is the position vector of a point which divides PR internally in the ratio $5: 4$
(C) $\frac{\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{~d}}}{3}$ is the position vector of a point which divides PR externally in the ratio $5: 4$
(D) The square of the magnitude of the vector $\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{d}}$ is 95
3. Let $\hat{\mathrm{i}}, \hat{\mathrm{j}}$ and $\hat{\mathrm{k}}$ be the unit vectors along the three positive coordinate axes. Let

$$
\begin{array}{ll}
\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}, \\
\overrightarrow{\mathrm{~b}}=\hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}}, & \mathrm{~b}_{2}, \mathrm{~b}_{3} \in \mathbb{R}, \\
\overrightarrow{\mathrm{c}}=\mathrm{c}_{1} \hat{i}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}, & \mathrm{c}_{1}, \mathrm{c}_{2}, c_{3} \in \mathbb{R}
\end{array}
$$

be three vectors such that $b_{2} b_{3}>0, \vec{a} \cdot \vec{b}=0$ and

$$
\left(\begin{array}{ccc}
0 & -c_{3} & c_{2} \\
c_{3} & 0 & -c_{1} \\
-c_{2} & c_{1} & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
b_{2} \\
b_{3}
\end{array}\right)=\left(\begin{array}{c}
3-c_{1} \\
1-c_{2} \\
-1-c_{3}
\end{array}\right) .
$$

Then, which of the following is/are TRUE?
[JEE(Advanced) 2022]
(A) $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=0$
(B) $\vec{b} \cdot \vec{c}=0$
(C) $|\vec{b}|>\sqrt{10}$
(D) $|\overrightarrow{\mathrm{c}}| \leq \sqrt{11}$
4. Let \vec{u}, \vec{v} and $\overrightarrow{\mathrm{w}}$ be vectors in three-dimensional space, where $\overrightarrow{\mathrm{u}}$ and $\overrightarrow{\mathrm{v}}$ are unit vectors which are not perpendicular to each other and $\vec{u} \cdot \overrightarrow{\mathrm{w}}=1, \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=1, \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{w}}=4$

If the volume of the parallelopiped, whose adjacent sides are represented by the vectors $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}$ and $\overrightarrow{\mathrm{w}}$, is $\sqrt{2}$, then the value of $|3 \vec{u}+5 \vec{v}|$ is \qquad .
[JEE(Advanced) 2021]
5. Let O be the origin and $\overrightarrow{\mathrm{OA}}=2 \hat{i}+2 \hat{j}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{OB}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{OC}}=\frac{1}{2}(\overrightarrow{\mathrm{OB}}-\lambda \overrightarrow{\mathrm{OA}})$ for some $\lambda>0$. If $|\overrightarrow{\mathrm{OB}} \times \overrightarrow{\mathrm{OC}}|=\frac{9}{2}$, then which of the following statements is (are) TRUE?
[JEE(Advanced) 2021]
(A) Projection of $\overrightarrow{\mathrm{OC}}$ on $\overrightarrow{\mathrm{OA}}$ is $-\frac{3}{2}$
(B) Area of the triangle OAB is $\frac{9}{2}$
(C) Area of the triangle ABC is $\frac{9}{2}$
(D) The acute angle between the diagonals of the parallelogram with adjacent sides $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OC}}$ is $\frac{\pi}{3}$
6. In a triangle PQR , let $\overrightarrow{\mathrm{a}}=\overline{\mathrm{QR}}, \overrightarrow{\mathrm{b}}=\overline{\mathrm{RP}}$ and $\overrightarrow{\mathrm{c}}=\overline{\mathrm{PQ}}$. If $|\overrightarrow{\mathrm{a}}|=3,|\overrightarrow{\mathrm{~b}}|=4$ and $\frac{\overrightarrow{\mathrm{a}} .(\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{b}})}{\overrightarrow{\mathrm{c}} .(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}})}=\frac{|\overrightarrow{\mathrm{a}}|}{|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}|}$, then the value of $|\vec{a} \times \vec{b}|^{2}$ is \qquad
[JEE(Advanced) 2020]
7. Let a and b be positive real numbers. Suppose $\overrightarrow{P Q}=a \hat{i}+b \hat{j}$ and $\overrightarrow{P S}=a \hat{i}-b \hat{j}$ are adjacent sides of a parallelogram PQRS. Let \vec{u} and \vec{v} be the projection vectors of $\overrightarrow{\mathrm{w}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ along $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PS}}$, respectively. If $|\overrightarrow{\mathrm{u}}|+|\overrightarrow{\mathrm{v}}|=|\overrightarrow{\mathrm{w}}|$ and if the area of the parallelogram PQRS is 8 , then which of the following statements is/are TRUE?
[JEE(Advanced) 2020]
(A) $a+b=4$
(B) $a-b=2$
(C) The length of the diagonal PR of the parallelogram PQRS is 4
(D) $\overrightarrow{\mathrm{w}}$ is an angle bisector of the vectors $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{PS}}$
8. Three lines
$\mathrm{L}_{1}: \overrightarrow{\mathrm{r}}=\lambda \hat{\mathrm{i}}, \lambda \in \mathbb{R}$,
$L_{2}: \overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{k}}+\mu \hat{\mathrm{j}}, \mu \in \mathbb{R}$ and
$L_{3}: \overrightarrow{\mathrm{r}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+v \hat{\mathrm{k}}, v \in \mathbb{R}$
are given. For which point(s) Q on L_{2} can we find a point P on L_{1} and a point R on L_{3} so that P, Q and R are collinear?
[JEE(Advanced) 2020]
(A) $\hat{k}+\hat{j}$
(B) \hat{k}
(C) $\hat{\mathrm{k}}+\frac{1}{2} \hat{\mathrm{j}}$
(D) $\hat{\mathrm{k}}-\frac{1}{2} \hat{\mathrm{j}}$
9. Let $\vec{a}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ be two vectors. Consider a vector $\vec{c}=\alpha \vec{a}+\beta \vec{b}, \alpha, \beta \in \mathbb{R}$. If the projection of \vec{c} on the vector $(\vec{a}+\vec{b})$ is $3 \sqrt{2}$, then the minimum value of $(\vec{c}-(\vec{a} \times \vec{b})) . \vec{c}$ equals
[JEE(Advanced) 2019]
10. Let \vec{a} and \vec{b} be two unit vectors such that $\vec{a} \cdot \vec{b}=0$. For some $x, y \in \mathbb{R}$, let $\vec{c}=x \vec{a}+y \vec{b}+(\vec{a} \times \vec{b})$. If $|\vec{c}|=2$ and the vector \vec{c} is inclined at the same angle α to both \vec{a} and \vec{b}, then the value of $8 \cos ^{2} \alpha$ is \qquad .
[JEE(Advanced) 2018]
11. Let O be the origin and let $P Q R$ be an arbitrary triangle. The point S is such that
$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OS}}$
Then the triangle PQR has S as its
[JEE(Advanced) 2017]
(A) incentre
(B) orthocenter
(C) circumcentre
(D) centroid

Paragraph for Question No. 12 and 13

Let O be the origin, and $\overrightarrow{\mathrm{OX}}, \overrightarrow{\mathrm{OY}}, \overrightarrow{\mathrm{OZ}}$ be three unit vectors in the directions of the sides $\overrightarrow{\mathrm{QR}}, \overrightarrow{\mathrm{RP}}, \overrightarrow{\mathrm{PQ}}$, respectively, of a triangle PQR .
12. $|\overrightarrow{\mathrm{OX}} \times \overrightarrow{\mathrm{OY}}|=$
[JEE(Advanced) 2017]
(A) $\sin (\mathrm{Q}+\mathrm{R})$
(B) $\sin (\mathrm{P}+\mathrm{R})$
(C) $\sin 2 R$
(D) $\sin (\mathrm{P}+\mathrm{Q})$
13. If the triangle $P Q R$ varies, then the minimum value of $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$ is
[JEE(Advanced) 2017]
(A) $\frac{3}{2}$
(B) $-\frac{3}{2}$
(C) $\frac{5}{3}$
(D) $-\frac{5}{3}$
14. Let $\hat{\mathrm{u}}=\mathrm{u}_{1} \hat{\mathrm{i}}+\mathrm{u}_{2} \hat{\mathrm{j}}+\mathrm{u}_{3} \hat{\mathrm{k}}$ be a unit vector in \mathbb{R}^{3} and $\hat{\mathrm{w}}=\frac{1}{\sqrt{6}}(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})$. Given that there exists a vector in \mathbb{R}^{3} such that $|\hat{\mathrm{u}} \times \overrightarrow{\mathrm{v}}|=1$ and $\hat{\mathrm{w}} .(\hat{\mathrm{u}} \times \overrightarrow{\mathrm{v}})=1$. Which of the following statement(s) is(are) correct?
[JEE(Advanced) 2016]
(A) There is exactly one choice for such \vec{v}
(B) There are infinitely many choice for such $\overrightarrow{\mathrm{v}}$
(C) If \hat{u} lies in the xy-plane then $\left|\mathrm{u}_{1}\right|=\left|\mathrm{u}_{2}\right|$
(D) If \hat{u} lies in the xz -plane then $2\left|\mathrm{u}_{1}\right|=\left|\mathrm{u}_{3}\right|$
15. Let $\triangle \mathrm{PQR}$ be a triangle. Let $\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{QR}}, \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{RP}}$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{PQ}}$. If $|\overrightarrow{\mathrm{a}}|=12,|\overrightarrow{\mathrm{~b}}|=4 \sqrt{3}$ and $\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{c}}=24$, then which of the following is (are) true?
[JEE(Advanced) 2015]
(A) $\frac{|\overrightarrow{\mathrm{c}}|^{2}}{2}-|\overrightarrow{\mathrm{a}}|=12$
(B) $\frac{|\overrightarrow{\mathrm{c}}|^{2}}{2}+|\overrightarrow{\mathrm{a}}|=30$
(C) $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
(D) $\vec{a} \cdot \vec{b}=-72$
16. Column-I
(A) In a triangle $\triangle \mathrm{XYZ}$, let a, b and c be the lengths of the sides opposite to the angles X, Y and Z , respectively. If $2\left(a^{2}-b^{2}\right)=c^{2}$ and $\lambda=\frac{\sin (X-Y)}{\sin Z}$, then possible values of n for which $\cos (n \pi \lambda)=0$ is (are)
(B) In a triangle $\triangle \mathrm{XYZ}$, let a, b and c be the lengths of the sides opposite to the angles X, Y and Z , respectively. If $1+\cos 2 X-2 \cos 2 Y=2 \sin X \sin Y$,
then possible value(s) of $\frac{a}{b}$ is (are)
(C) In \mathbb{R}^{2}, Let $\sqrt{3} i+\hat{j}, \hat{i}+\sqrt{3} \hat{j}$ and $\beta \hat{i}+(1-\beta) \hat{j}$ (R) 3
be the position vectors of X, Y and Z with respect to the origin O, respectively. If the distance of Z from the bisector of the acute angle of $\overrightarrow{\mathrm{OX}}$ and $\overrightarrow{\mathrm{OY}}$ is $\frac{3}{\sqrt{2}}$, then possible value(s) of $|\beta|$ is (are)
(D) Suppose that $\mathrm{F}(\alpha)$ denotes the area of the region bounded
by $\mathrm{x}=0, \mathrm{x}=2, \mathrm{y}^{2}=4 \mathrm{x}$ and $\mathrm{y}=|\alpha \mathrm{x}-1|+|\alpha \mathrm{x}-2|+\alpha \mathrm{x}$,
where $\alpha \in\{0,1\}$. Then the value(s) of $F(\alpha)+\frac{8}{3} \sqrt{2}$,
when $\alpha=0$ and $\alpha=1$, is(are)
(T) 6
[JEE(Advanced) 2015]
17. Suppose that $\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{q}}$ and $\overrightarrow{\mathrm{r}}$ are three non-coplanar vectors in \mathbb{R}^{3}. Let the components of a vector $\overrightarrow{\mathrm{s}}$ along $\overrightarrow{\mathrm{p}}, \overrightarrow{\mathrm{q}}$ and $\overrightarrow{\mathrm{r}}$ be 4,3 and 5 , respectively. If the components of this vector $\vec{r} \operatorname{along}(-\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}}),(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}})$ and $(-\vec{p}-\vec{q}+\vec{r})$ are x, y and z, respectively, then the value of $2 x+y+z$ is
[JEE(Advanced) 2015]
18. Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If \vec{a} is a nonzero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is nonzero vector perpendicular to \vec{y} and $\overrightarrow{\mathrm{z}} \times \overrightarrow{\mathrm{x}}$, then
[JEE(Advanced) 2015]
(A) $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
(B) $\overrightarrow{\mathrm{a}}=(\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{y}})(\overrightarrow{\mathrm{y}}-\overrightarrow{\mathrm{z}})$
(C) $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
(D) $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$
19. Let \vec{a}, \vec{b} and \vec{c} be three non-coplanar unit vectors such that the angle between every pair of them is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, where p, q and r are scalars, then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is
[JEE(Advanced) 2014]
20.

List-I

List-II
P. Let $\mathrm{y}(\mathrm{x})=\cos \left(3 \cos ^{-1} \mathrm{x}\right), \mathrm{x} \in[-1,1], \mathrm{x} \neq \pm \frac{\sqrt{3}}{2}$.

1. 1

Then $\frac{1}{y(x)}\left\{\left(x^{2}-1\right) \frac{d^{2} y(x)}{d x^{2}}+x \frac{d y(x)}{d x}\right\}$ equals
Q. Let $A_{1}, A_{2}, \ldots . . ., A_{n}(n>2)$ be the vertices of a regular polygon of n sides with its centre at the origin. Let $\overrightarrow{\mathrm{a}_{\mathrm{k}}}$ be the position vector of the point
$\mathrm{A}_{\mathrm{k}}, \mathrm{k}=1,2, \ldots . . \mathrm{n}$.
If $\left|\sum_{k=1}^{n-1}\left(\overrightarrow{a_{k}} \times \overrightarrow{a_{k+1}}\right)\right|=\left|\sum_{k=1}^{n-1}\left(\overrightarrow{a_{k}} \cdot \overrightarrow{a_{k+1}}\right)\right|$, then the minimum value of n is
R. If the normal from the point $\mathrm{P}(\mathrm{h}, 1)$ on the ellipse
$\frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ is perpendicular to the line $x+y=8$,
then the value of h is
S. Number of positive solutions satisfying the equation

$$
\tan ^{-1}\left(\frac{1}{2 x+1}\right)+\tan ^{-1}\left(\frac{1}{4 x+1}\right)=\tan ^{-1}\left(\frac{2}{x^{2}}\right) \text { is }
$$

3. 8
4. 9
5. 2
[JEE(Advanced) 2014]

Codes :

	P	Q	R	S
(A)	4	3	2	1
(B)	2	4	3	1
(C)	4	3	1	2
(D)	2	4	1	3

SOLUTIONS

1. Ans. (45)

Sol.

Given $|\overrightarrow{\mathrm{u}}-\overrightarrow{\mathrm{v}}|=|\overrightarrow{\mathrm{v}}-\overrightarrow{\mathrm{w}}|=|\overrightarrow{\mathrm{w}}-\overrightarrow{\mathrm{u}}|$
$\Rightarrow \Delta \mathrm{UVW}$ is an equilateral Δ
Now distances of $\mathrm{U}, \mathrm{V}, \mathrm{W}$ from $\mathrm{P}=\frac{7}{2}$
$\Rightarrow \mathrm{PQ}=\frac{7}{2}$
Also, Distance of plane P from origin
$\Rightarrow \mathrm{OQ}=4$
$\therefore \mathrm{OP}=\mathrm{OQ}-\mathrm{PQ} \Rightarrow \mathrm{OP}=\frac{1}{2}$
Hence, $\mathrm{PU}=\sqrt{\mathrm{OU}^{2}-\mathrm{OP}^{2}} \Rightarrow \mathrm{PU}=\frac{\sqrt{3}}{2}=\mathrm{R}$
Also, for $\triangle \mathrm{UVW}, \mathrm{P}$ is circumcenter
\therefore for $\triangle U V W$: US $=R \cos 30^{\circ}$
$\Rightarrow \mathrm{UV}=2 \mathrm{R} \cos 30^{\circ}$
$\Rightarrow \mathrm{UV}=\frac{3}{2}$

$\therefore \quad \operatorname{Ar}(\Delta \mathrm{UVW})=\frac{\sqrt{3}}{4}\left(\frac{3}{2}\right)^{2}=\frac{9 \sqrt{3}}{16}$
$\therefore \quad$ Volume of tetrahedron with coterminous edges $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}$
$=\frac{1}{3}(\mathrm{Ar} . \Delta \mathrm{UVW}) \times \mathrm{OP}=\frac{1}{3} \times \frac{9 \sqrt{3}}{16} \times \frac{1}{2}=\frac{3 \sqrt{3}}{32}$
\therefore parallelopiped with coterminous edges
$\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}=6 \times \frac{3 \sqrt{3}}{32}=\frac{9 \sqrt{3}}{16}=\mathrm{V}$
$\therefore \frac{80}{\sqrt{3}} \mathrm{~V}=45$
2. Ans. (B)

Sol. $\quad P(\hat{i}+2 \hat{j}-5 \hat{k})=P(\vec{a})$
$Q(3 \hat{i}+6 \hat{j}+3 \hat{k})=Q(\vec{b})$
$R\left(\frac{17}{5} \hat{\mathrm{i}}+\frac{16}{5} \hat{\mathrm{j}}+7 \hat{\mathrm{k}}\right)=R(\overrightarrow{\mathrm{c}})$
$S(2 \hat{i}+\hat{j}+\hat{k})=S(\vec{d})$
$\frac{\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{~d}}}{3}=\frac{7 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{3}$
$\frac{5 \overrightarrow{\mathrm{c}}+4 \overrightarrow{\mathrm{a}}}{9}=\frac{21 \hat{\mathrm{i}}+24 \hat{\mathrm{j}}+15 \hat{\mathrm{k}}}{9}$
$\Rightarrow \frac{\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{~d}}}{3}=\frac{5 \overrightarrow{\mathrm{c}}+4 \overrightarrow{\mathrm{a}}}{9}$
so [B] is correct.
option (D)
$|\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{d}}|^{2}=|\overrightarrow{\mathrm{b}}||\overrightarrow{\mathrm{d}}|^{2}-(\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{d}})^{2}$
$=(9+36+9)(4+1+1)-(6+6+3)^{2}$
$=54 \times 6-(15)^{2}$
$=324-225$
$=99$
3. Ans. (B, C, D)

Sol. $\vec{a}=3 \hat{i}+\hat{j}-\hat{k}$
$\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+\mathrm{b}_{2} \hat{\mathrm{j}}+\mathrm{b}_{3} \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{c}}=\mathrm{c}_{1} \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}$
$\left(\begin{array}{ccc}0 & -c_{3} & c_{2} \\ c_{3} & 0 & -c_{1} \\ -c_{2} & c_{1} & 0\end{array}\right)\left(\begin{array}{l}1 \\ b_{2} \\ b_{3}\end{array}\right)=\left(\begin{array}{l}3-c_{1} \\ 1-c_{2} \\ -1-c_{3}\end{array}\right)$
multiply \& compare
$\mathrm{b}_{2} \mathrm{c}_{3}-\mathrm{b}_{3} \mathrm{c}_{2}=\mathrm{c}_{1}-3$
$c_{3}-b_{3} c_{1}=1-c_{2}$
$\mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}=1+\mathrm{c}_{3}$
(1) $\hat{\mathrm{i}}-(2) \hat{\mathrm{j}}+(3) \hat{\mathrm{k}}$
$\hat{i}\left(b_{2} c_{3}-b_{3} c_{2}\right)-\hat{j}\left(c_{3}-b_{3} c_{1}\right)+\hat{k}\left(c_{2}-b_{2} c_{1}\right)$
$=c_{1} \hat{i}+c_{2} \hat{j}+c_{2} \hat{k}-3 \hat{i}-\hat{j}+\hat{k}$
$\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}$
Take dot product with \vec{b}
$0=\vec{c} \cdot \vec{b}-\vec{a} \cdot \vec{b}$
$\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{c}}=0$
$\overrightarrow{\mathrm{b}} \perp \overrightarrow{\mathrm{c}}$
$\overrightarrow{\mathrm{b}} \stackrel{\rightharpoonup}{\mathrm{c}}=90^{\circ}$
Take dot product with $\overrightarrow{\mathbf{c}}$
$0=|\vec{c}|^{2}-\vec{a} . \vec{c}$
$\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|^{2}$
$\vec{a} . \vec{c} \neq 0$
$\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}$
Squaring
$\left.|\overrightarrow{\mathrm{b}}|^{2} \overrightarrow{\mathrm{c}}\right|^{2}=|\overrightarrow{\mathrm{c}}|^{2}+|\overrightarrow{\mathrm{a}}|^{2}-2 \overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathrm{a}}$
$|\vec{b}|^{2}|\vec{c}|^{2}=|\vec{c}|^{2}+11-2|\vec{c}|^{2}$
$|\overrightarrow{\mathrm{b}}|^{2}|\overrightarrow{\mathrm{c}}|^{2}=11-|\overrightarrow{\mathbf{c}}|^{2}$
$|\overrightarrow{\mathbf{c}}|^{2}\left(|\vec{b}|^{2}+1\right)=11$
$|\overrightarrow{\mathrm{c}}|^{2}=\frac{11}{|\overrightarrow{\mathrm{~b}}|^{2}+1}$
$|\overrightarrow{\mathbf{c}}| \leq \sqrt{11}$
given $\vec{a} \cdot \vec{b}=0$
$b_{2}-b_{3}=-3 \quad$ also
$b_{2}{ }^{2}+b_{3}{ }^{2}-2 b_{2} b_{3}=9 \quad b_{2} b_{3}>0$
$b_{2}{ }^{2}+b_{3}{ }^{2}=9+2 b_{2} b_{3}$
$b_{2}{ }^{2}+b_{3}{ }^{2}=9+2 b_{2} b_{3}>9$
$\mathrm{b}_{2}{ }^{2}+\mathrm{b}_{3}{ }^{2}>9$
$|\vec{b}|=\sqrt{1+b_{2}^{2}+b_{3}^{2}}$
$|\vec{b}|>\sqrt{10}$
4. Ans. (7)

Sol. Given, $|\overrightarrow{\mathrm{u}}|=1 ; \quad|\overrightarrow{\mathrm{v}}|=1 ; \quad \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}} \neq 0 ; \quad \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{w}}=1$;
$\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}}=1 ;$
$\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{w}}=|\overrightarrow{\mathrm{w}}|^{2}=4 \Rightarrow|\overrightarrow{\mathrm{w}}|=2$;
$\left[\begin{array}{lll}\overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}}\end{array}\right]=\sqrt{2}$
and $\left[\begin{array}{lll}\overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}}\end{array}\right]^{2}=\left|\begin{array}{lll}\overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{w}} \\ \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{w}} \\ \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{u}} & \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{v}} & \overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{w}}\end{array}\right|=2$
$\Rightarrow\left|\begin{array}{ccc}1 & \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}} & 1 \\ \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}} & 1 & 1 \\ 1 & 1 & 4\end{array}\right|=2$
$\Rightarrow \overrightarrow{\mathrm{u}} . \overrightarrow{\mathrm{v}}=\frac{1}{2}$
So, $|3 \overrightarrow{\mathrm{u}}+5 \overrightarrow{\mathrm{v}}|=\sqrt{9|\overrightarrow{\mathrm{u}}|^{2}+25|\overrightarrow{\mathrm{v}}|^{2}+2.3 .5 \overrightarrow{\mathrm{u}} \cdot \overrightarrow{\mathrm{v}}}$
$=\sqrt{9+25+30\left(\frac{1}{2}\right)}=\sqrt{49}=7$
5. Ans. (A, B, C)

Sol. $\quad \overrightarrow{\mathrm{OB}} \times \overrightarrow{\mathrm{OC}}=\frac{1}{2} \overrightarrow{\mathrm{OB}} \times(\overrightarrow{\mathrm{OB}}-\lambda \overrightarrow{\mathrm{OA}})$
$=\frac{\lambda}{2}(\overrightarrow{\mathrm{OA}} \times \overrightarrow{\mathrm{OB}})$
$|\overrightarrow{\mathrm{OB}}| \times|\overrightarrow{\mathrm{OC}}|=\frac{|\lambda|}{2}|\overrightarrow{\mathrm{OA}}| \times|\overrightarrow{\mathrm{OB}}|$
(Note $\overrightarrow{\mathrm{OA}} \& \overrightarrow{\mathrm{OB}}$ are perpendicular)
$\Rightarrow \frac{9 \lambda}{2}=\frac{9}{2} \Rightarrow \lambda=1($ given $\lambda>0)$
So $\overrightarrow{\mathrm{OC}}=\frac{\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}}{2}=\frac{\overrightarrow{\mathrm{AB}}}{2}$

M is mid point of $A B$

Note projection of $\overrightarrow{\mathrm{OC}}$ on $\overrightarrow{\mathrm{OA}}=-\frac{3}{2}$
$\tan \theta=\frac{1}{3}$
Area of $\triangle \mathrm{ABC}=\frac{9}{2}$
Acute angle between diagonals is
$\tan ^{-1}\left(\frac{1+\frac{1}{3}}{1-\frac{1}{3}}\right)=\tan ^{-1} 2$
6. Ans. (108.00)

Sol. We have $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
$\Rightarrow \overrightarrow{\mathrm{c}}=-\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}}$
Now, $\frac{\vec{a} \cdot(-\vec{a}-2 \vec{b})}{(-\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})}=\frac{3}{7}$

$\Rightarrow \frac{9+2 \vec{a} \cdot \vec{b}}{9-16}=\frac{3}{7}$
$\Rightarrow \vec{a} \cdot \vec{b}=-6$
$\Rightarrow|\vec{a} \times \vec{b}|^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}=9 \times 16-36=108$
7. Ans. (A, C)

Sol.

$\overrightarrow{\mathrm{u}}=((\mathrm{i}+\mathrm{j}) \cdot \widehat{\mathrm{PQ}}) \widehat{\mathrm{PQ}}$
$\overrightarrow{\mathrm{u}}=|(\mathrm{i}+\mathrm{j}) \cdot \widehat{\mathrm{PQ}}|$
$|\overrightarrow{\mathrm{u}}|=\left|(\mathrm{i}+\mathrm{j}) \cdot \frac{(\mathrm{ai}+\mathrm{bj})}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}}\right|=\frac{a+b}{a^{2}+b^{2}}$
$\overrightarrow{\mathrm{v}}=(\mathrm{i}+\mathrm{j}) . \widehat{\mathrm{PS}}$
$|\vec{v}|=\left|\frac{(i+j) \cdot(a i-b j)}{\sqrt{a^{2}+b^{2}}}\right|=\frac{a-b}{\sqrt{a^{2}+b^{2}}}$
$|\overrightarrow{\mathrm{u}}|+|\overrightarrow{\mathrm{v}}|=|\overrightarrow{\mathrm{w}}|$
$\frac{|(a+b)|+|(a-b)|}{\sqrt{a^{2}+b^{2}}}=\sqrt{2}$
For $\mathrm{a} \geq \mathrm{b}$
$2 \mathrm{a}=\sqrt{2} \cdot \sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}}$
$4 a^{2}=2 a^{2}+2 b^{2}$
$\mathrm{a}^{2}=\mathrm{b}^{2} \quad \therefore \mathrm{a}=\mathrm{b}$
$(a>0, b>0)$
similarly for $a \leq b$ we will get $a=b$
Now area of parallelogram
$=|(a i+b j) \times(a i-b j)|$
$=2 \mathrm{ab}$
$\therefore 2 \mathrm{ab}=8$
$\mathrm{ab}=4$
from (1) and (2)
$\mathrm{a}=2, \mathrm{~b}=2$
$\therefore \mathrm{a}+\mathrm{b}=4$ option (A)
length of diagonal is
$|2 \mathrm{a} \hat{\mathrm{i}}|=|4 \hat{\mathrm{i}}|=4$
so option (C)
8. Ans. (C, D)

Sol. Let $\mathrm{P}(\lambda, 0,0), \mathrm{Q}(0, \mu, 1), \mathrm{R}(1,1, v)$ be points.
$\mathrm{L}_{1}, \mathrm{~L}_{2}$ and L_{3} respectively
Since $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear, $\overrightarrow{\mathrm{PQ}}$ is collinear with $\overrightarrow{\mathrm{QR}}$

Hence $\frac{-\lambda}{1}=\frac{\mu}{1-\mu}=\frac{1}{v-1}$
For every $\mu \in R-\{0,1\}$ there exist unique $\lambda, v \in R$

Hence Q cannot have coordinates $(0,1,1)$ and $(0,0,1)$.
9. Ans. (18.00)

Sol. $\quad \overrightarrow{\mathrm{c}}=(2 \alpha+\beta) \hat{\mathrm{i}}+\hat{\mathrm{j}}(\alpha+2 \beta)+\hat{\mathrm{k}}(\beta-\alpha)$

$$
\begin{align*}
& \frac{\overrightarrow{\mathrm{c}} \cdot(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}})}{|\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}|}=3 \sqrt{2} \\
& \Rightarrow \quad \alpha+\beta=2 \tag{1}\\
& \quad(\overrightarrow{\mathrm{c}}-(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})) \cdot(\alpha \overrightarrow{\mathrm{a}}+\beta \overrightarrow{\mathrm{b}}) \\
& \quad=|\overrightarrow{\mathrm{c}}|^{2}=\alpha^{2}|\overrightarrow{\mathrm{a}}|^{2}+\beta^{2}|\mathrm{~b}|^{2}+2 \alpha \beta(\overrightarrow{\mathrm{a}} \cdot \vec{b}) \\
& =6\left(\alpha^{2}+\beta^{2}+\alpha \beta\right) \\
& =6\left(\alpha^{2}+(2-\alpha)^{2}+\alpha(2-\alpha)\right) \\
& \quad=6\left((\alpha-1)^{2}+3\right)
\end{align*}
$$

$\Rightarrow \quad$ Min. value $=18$
10. Ans. (3)

Sol. $\vec{c}=x \vec{a}+y \vec{b}+\vec{a} \times \vec{b}$
$\vec{c} \cdot \vec{a}=x$ and $\mathrm{x}=2 \cos \alpha$
$\vec{c} \cdot \vec{b}=y$ and $y=2 \cos \alpha$
Also, $|\vec{a} \times \vec{b}|=1$
$\therefore \quad \vec{c}=2 \cos \alpha(\vec{a}+\vec{b})+\vec{a} \times \vec{b}$

$$
\vec{c}^{2}=4 \cos ^{2} \alpha(\vec{a}+\vec{b})^{2}+(\vec{a} \times \vec{b})^{2}+
$$

$2 \cos \alpha(\vec{a}+\vec{b}) \cdot(\vec{a} \times \vec{b})$

$$
4=8 \cos ^{2} \alpha+1
$$

$$
8 \cos ^{2} \alpha=3
$$

11. Ans. (B)

Sol. Let position vector of $\mathrm{P}(\overrightarrow{\mathrm{p}}), \mathrm{Q}(\overrightarrow{\mathrm{q}}), \mathrm{R}(\overrightarrow{\mathrm{r}}) \quad \&$ $\mathrm{S}(\overrightarrow{\mathrm{s}})$ with respect to $\mathrm{O}(\overrightarrow{\mathrm{o}})$
Now, $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OS}}$
$\Rightarrow \quad \overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{s}}$
$\Rightarrow \quad(\vec{p}-\vec{s}) \cdot(\vec{q}-\vec{r})=0$
Also, $\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OS}}$
$\Rightarrow \quad \overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{s}}$
$\Rightarrow \quad(\vec{r}-\vec{s}) \cdot(\vec{p}-\vec{q})=0$
Also, $\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OQ}}+\overrightarrow{\mathrm{OR}} \cdot \overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OR}}+\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{OS}}$
$\Rightarrow \quad \overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}} \cdot \overrightarrow{\mathrm{s}}=\overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{r}}+\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{s}}$
$\Rightarrow \quad(\overrightarrow{\mathrm{q}}-\overrightarrow{\mathrm{s}}) \cdot(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{r}})=0$

$\Rightarrow \quad$ Triangle PQR has S as its orthocentre
$\therefore \quad$ option (B) is correct.
12. Ans. (D)

Sol. $\overrightarrow{\mathrm{OX}}=\frac{\overrightarrow{\mathrm{QR}}}{\mathrm{QR}}$
$\overrightarrow{\mathrm{OY}}=\frac{\overrightarrow{\mathrm{RP}}}{\mathrm{RP}}$
$|\overrightarrow{\mathrm{OX}} \times \overrightarrow{\mathrm{OY}}|=\sin \mathrm{R}=\sin (\mathrm{P}+\mathrm{Q})$
13. Ans. (B)

Sol. $-(\cos \mathrm{P}+\cos \mathrm{Q}+\cos \mathrm{R}) \geq-\frac{3}{2}$ as we know $\cos P+\cos Q+\cos R$ will take its maximum value when $\mathrm{P}=\mathrm{Q}=\mathrm{R}=\frac{\pi}{3}$
14. Ans. (B, C)

Sol. $|\hat{\mathrm{w}} \| \hat{\mathrm{u}} \times \hat{\mathrm{v}}| \cos \phi=1 \Rightarrow \phi=0$

$\Rightarrow \quad \hat{\mathrm{u}} \times \overrightarrow{\mathrm{v}}=\hat{\mathrm{w}}$ also $|\overrightarrow{\mathrm{v}}| \sin \theta=1$
$\Rightarrow \quad$ there may be infinite vectors $\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{OP}}$
such that P is always 1 unit dist. from $\hat{\mathrm{u}}$
For option (C) : $\hat{\mathbf{u}} \times \overrightarrow{\mathrm{v}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{j} & \hat{k} \\ \mathrm{u}_{1} & \mathrm{u}_{2} & 0 \\ \mathrm{v}_{1} & \mathrm{v}_{2} & \mathrm{v}_{3}\end{array}\right|$
$\hat{\mathrm{w}}=\left(\mathrm{u}_{2} \mathrm{v}_{3}\right) \hat{\mathrm{i}}-\left(\mathrm{u}_{1} \mathrm{v}_{3}\right) \hat{\mathrm{j}}+\left(\mathrm{u}_{1} \mathrm{v}_{2}-\mathrm{u}_{2} \mathrm{v}_{1}\right) \hat{\mathrm{k}}$
$\mathrm{u}_{2} \mathrm{v}_{3}=\frac{1}{\sqrt{6}},-\mathrm{u}_{1} \mathrm{v}_{3}=\frac{1}{\sqrt{6}}$
$\Rightarrow \quad\left|\mathrm{u}_{1}\right|=\left|\mathrm{u}_{2}\right|$
for option (D) : $\hat{u} \times \vec{v}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ u_{1} & 0 & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
$\hat{w}=\left(-v_{2} u_{3}\right) \hat{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \hat{j}+\left(u_{1} v_{2}\right) \hat{k}$
$-\mathrm{v}_{2} \mathrm{u}_{3}=\frac{1}{\sqrt{6}}, \mathrm{u}_{1} \mathrm{v}_{2}=\frac{2}{\sqrt{6}}$
$\Rightarrow 2\left|\mathrm{u}_{3}\right|=\left|\mathrm{u}_{1}\right| \quad$ So, (D) is wrong
15. Ans. (A, C, D)

Sol.

$|\vec{a}|=12,|\vec{b}|=4 \sqrt{3}$
$\vec{a}+\vec{b}+\vec{c}=0$
$\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}+2 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}$
$144=48+c^{2}+48$
$c^{2}=48 \quad \Rightarrow \quad c=4 \sqrt{3}$
Also $c^{2}=a^{2}+b^{2}+2 \vec{a} \cdot \vec{b}$
$48=144+48+2 \vec{a} \cdot \vec{b}$
$\Rightarrow \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=-72$
Also by (1)
$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}$
$\Rightarrow|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=2|\vec{a} \times \vec{b}|$
$=2 \sqrt{a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}}$
$=2 \sqrt{12^{2} .48-(72)^{2}}$
$=2.12 \sqrt{48-36}=48 \sqrt{3}$
$\therefore \quad \mathrm{A}, \mathrm{C}, \mathrm{D}$ are correct \& B incorrect.
16. Ans. (A) $\rightarrow(\mathrm{P}, \mathrm{R}, \mathrm{S}) ;(\mathrm{B}) \rightarrow(\mathrm{P}) ;(\mathrm{C}) \rightarrow(\mathrm{P}, \mathrm{Q})$;
(D) $\rightarrow(\mathrm{S}, \mathrm{T})$

Sol. (A) $2\left(\sin ^{2} x-\sin ^{2} y\right)=\sin ^{2} z$

$$
2 \sin (x-y) \sin (x+y)=\sin ^{2} z
$$

$$
\begin{aligned}
& \because \mathrm{x}+\mathrm{y}+\mathrm{z}=\pi \\
& \frac{\sin (\mathrm{x}-\mathrm{y})}{\sin \mathrm{z}}=\frac{1}{2} \Rightarrow \lambda=\frac{1}{2} \\
& \Rightarrow \cos \left(\frac{\mathrm{n} \pi}{2}\right)=0 \Rightarrow \mathrm{n}=1,3,5
\end{aligned}
$$

(B) $1+1-2 \sin ^{2} \mathrm{x}-2\left(1-2 \sin ^{2} \mathrm{y}\right)$
$=2 \sin x \sin y$
$\Rightarrow-2 \mathrm{a}^{2}+4 \mathrm{~b}^{2}=2 \mathrm{ab}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{ab}-2 \mathrm{~b}^{2}=0$
$\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{2}+\left(\frac{\mathrm{a}}{\mathrm{b}}\right)-2=0 \Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=-2,1$
$\Rightarrow \frac{\mathrm{a}}{\mathrm{b}}=1$ as -2 rejected
(C) Angle bisector of $\overrightarrow{\mathrm{OX}} \& \overrightarrow{\mathrm{OY}}$ is along the line $\mathrm{y}=\mathrm{x}$ and its distance from $(\beta, 1-\beta)$ is
$\left|\frac{\beta-(1-\beta)}{\sqrt{2}}\right|=\frac{3}{\sqrt{2}} \Rightarrow 2 \beta-1= \pm 3$
$\Rightarrow \beta=2,-1$
$\Rightarrow|\beta|=1,2$
(D) 7
$6-\int_{0}^{2} 2 \sqrt{x} d x$
$5-\int_{0}^{2} 2 \sqrt{x} d x$
$6-\frac{8}{3} \sqrt{2}$
...(1) $5-\frac{8}{3} \sqrt{2}$

By (1) \& (2) $\mathrm{F}(\alpha)+\frac{8}{3} \sqrt{2}$
can be 5 or 6 .
17. Ans. (Bonus)

Sol. Although the language of the question is not appropriate (incomplete information) and it must be declare as bonus but as per the theme of problem it must be as follows
$\overrightarrow{\mathrm{s}}=4 \overrightarrow{\mathrm{p}}+3 \overrightarrow{\mathrm{q}}+5 \overrightarrow{\mathrm{r}}$
$\overrightarrow{\mathrm{s}}=\mathrm{x}(-\overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}})+\mathrm{y}(\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}})+\mathrm{z}(-\overrightarrow{\mathrm{p}}-\overrightarrow{\mathrm{q}}+\overrightarrow{\mathrm{r}})$
$\vec{s}=\vec{p}(-x+y-z)+\vec{q}(x-y-z)+\vec{r}(x+y+z)$

ALIEM ${ }^{\circledR}$
$-x+y-z=4$
$x-y-z=3$
$x+y+z=5$
$\Rightarrow \mathrm{x}=4, \mathrm{y}=\frac{9}{2}, \mathrm{z}=-\frac{7}{2}$
$\Rightarrow 2 \mathrm{x}+\mathrm{y}+\mathrm{z}=8-\frac{7}{2}+\frac{9}{2}=9$

18. Ans. (A, B, C)

Sol. Given that $|\overrightarrow{\mathrm{x}}|=|\overrightarrow{\mathrm{y}}|=|\overrightarrow{\mathrm{z}}|=\sqrt{2}$
and angle between each pair is $\frac{\pi}{3}$
$\therefore \quad \vec{x} \cdot \vec{y}=\vec{y} \cdot \vec{z}=\vec{z} \cdot \vec{x}=\sqrt{2} \cdot \sqrt{2} \cdot \frac{1}{2}=1$
Now \vec{a} is \perp to $\overrightarrow{\mathrm{x}} \&(\overrightarrow{\mathrm{y}} \times \overrightarrow{\mathrm{z}})$
Let $\quad \vec{a}=\lambda(\vec{x} \times(\vec{y} \times \vec{z}))$

$$
=\lambda((\overrightarrow{\mathrm{x}} . \overrightarrow{\mathrm{z}}) \overrightarrow{\mathrm{y}}-(\overrightarrow{\mathrm{x}} \cdot \overrightarrow{\mathrm{y}}) \overrightarrow{\mathrm{z}})=\lambda(\overrightarrow{\mathrm{y}}-\overrightarrow{\mathrm{z}})
$$

$$
\vec{a} \cdot \vec{y}=\lambda(\vec{y} \cdot \vec{y}-\vec{y} \cdot \vec{z})=\lambda(2-1)=\lambda
$$

$\Rightarrow \vec{a}=(\vec{a} \cdot \vec{y})(\overrightarrow{\mathrm{y}}-\overrightarrow{\mathrm{z}})$
Now let $\vec{b}=\mu(\vec{y} \times(\vec{z} \times \vec{x}))=\mu(\vec{z}-\vec{x})$

$$
\begin{aligned}
& \overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{z}}=\mu(2-1)=\mu \\
\Rightarrow \quad & \overrightarrow{\mathrm{b}}=(\overrightarrow{\mathrm{b}} . \overrightarrow{\mathrm{z}})(\overrightarrow{\mathrm{z}}-\overrightarrow{\mathrm{x}})
\end{aligned}
$$

Now $\vec{a} \cdot \vec{b}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z}) \cdot(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$

$$
\begin{aligned}
& =(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})(\vec{y} \cdot \vec{z}-\vec{y} \cdot \vec{x}-\vec{z} \cdot \vec{z}+\vec{z} \cdot \vec{x}) \\
& =(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})(1-1-2+1) \\
& =-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})
\end{aligned}
$$

19. Ans. (4)

Sol. We know $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}=\left|\begin{array}{lll}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} . \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

$$
=\left|\begin{array}{lll}
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right|=\frac{5}{4}-\frac{3}{4}=\frac{1}{2}
$$

$\therefore\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \overrightarrow{\mathrm{b}} & \overrightarrow{\mathrm{c}}\end{array}\right]=\frac{1}{\sqrt{2}}$
as given $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$
take dot product with \vec{a}
$\Rightarrow \vec{a} .(\vec{a} \times \vec{b})+\vec{a} .(\vec{b} \times \vec{c})=p \vec{a}^{2}+q \vec{b} \cdot \vec{a}+r \vec{c} \cdot \vec{a}$
$\Rightarrow 0+\frac{1}{\sqrt{2}}=\mathrm{p}+\frac{\mathrm{q}}{2}+\frac{\mathrm{r}}{2}$
Now, take dot product with $\vec{b} \& \vec{c}$
$0=\frac{\mathrm{p}}{2}+\mathrm{q}+\frac{\mathrm{r}}{2}$
$\& \frac{1}{\sqrt{2}}=\frac{\mathrm{p}}{2}+\frac{\mathrm{q}}{2}+\mathrm{r}$
equation (2) - equation (4)
$\Rightarrow \frac{\mathrm{p}}{2}-\frac{\mathrm{r}}{2}=0 \Rightarrow \mathrm{p}=\mathrm{r} \Rightarrow \mathrm{p}+\mathrm{q}=0$ by equation (3)
$\therefore \frac{\mathrm{p}^{2}+2 \mathrm{q}^{2}+\mathrm{r}^{2}}{\mathrm{q}^{2}}=\frac{\mathrm{p}^{2}+2 \mathrm{p}^{2}+\mathrm{p}^{2}}{\mathrm{p}^{2}}=4$
20. Ans. (A)

Sol. (P) $y=\cos \left(3 \cos ^{-1} x\right)=\left(4 x^{3}-3 x\right)$

$$
\begin{aligned}
& \frac{d y}{d x}=12 x^{2}-3, \frac{d^{2} y}{d x^{2}}=24 x \\
& \text { then } \frac{1}{y}\left[\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+\frac{x d y}{d x}\right] \\
& \frac{1}{4 x^{3}-3 x}\left[\left(x^{2}-1\right) \cdot 24 x+x\left(12 x^{2}-3\right)\right] \\
& =9
\end{aligned}
$$

(Q) let $\vec{a}_{1}=\hat{\mathrm{i}}$,
then $\overrightarrow{\mathrm{a}}_{2}=\cos \frac{2 \pi}{\mathrm{n}} \hat{\mathrm{i}}+\sin \frac{2 \pi}{\mathrm{n}} \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{a}}_{3}=\cos \frac{4 \pi}{\mathrm{n}} \hat{\mathrm{i}}+\sin \frac{4 \pi}{4} \hat{\mathrm{j}} \ldots$
now

$$
\begin{aligned}
& \left|\overrightarrow{\mathrm{a}}_{1} \times \overrightarrow{\mathrm{a}}_{2}+\overrightarrow{\mathrm{a}}_{2} \times \overrightarrow{\mathrm{a}}_{3}+\ldots . .+\overrightarrow{\mathrm{a}}_{\mathrm{n}-1} \times \overrightarrow{\mathrm{a}}_{\mathrm{n}}\right| \\
& =\left|\overrightarrow{\mathrm{a}}_{1} \cdot \overrightarrow{\mathrm{a}}_{2}+\overrightarrow{\mathrm{a}}_{2} \cdot \overrightarrow{\mathrm{a}}_{3}+\ldots \ldots+\overrightarrow{\mathrm{a}}_{\mathrm{n}-1} \cdot \overrightarrow{\mathrm{a}}_{\mathrm{n}}\right| \\
& =\left|(\mathrm{n}-1) \sin \frac{2 \pi}{\mathrm{n}} \hat{\mathrm{k}}\right|=\left|(\mathrm{n}-1) \cos \frac{2 \pi}{\mathrm{n}}\right|
\end{aligned}
$$

$\Rightarrow \tan \frac{2 \pi}{\mathrm{n}}=1$
\Rightarrow for minimum $\mathrm{n} \frac{2 \pi}{\mathrm{n}}=\frac{\pi}{4} \Rightarrow \mathrm{n}=8$
(R) $\frac{x^{2}}{6}+\frac{y^{2}}{3}=1 \Rightarrow \frac{d y}{d x}=-\frac{x}{2 y} \Rightarrow \frac{2 y}{x}=1$
$\Rightarrow \frac{4 y^{2}}{6}+\frac{y^{2}}{3}=1 \Rightarrow y= \pm 1 \& x= \pm 2$
as normal passes through $(-2,-1)$ and (h,1) slope of normal
$=\frac{2}{\mathrm{~h}+2}=1 \Rightarrow \mathrm{~h}=0$
OR
if normal passes through $(2,1)$ then $h=2$
(S) $\tan ^{-1}\left(\frac{1}{2 x+1}\right)+\tan ^{-1}\left(\frac{1}{4 x+1}\right)=\tan ^{-1}\left(\frac{2}{x^{2}}\right)$
$\Rightarrow \tan ^{-1} \frac{\frac{1}{2 x+1}+\frac{1}{4 x+1}}{1-\frac{1}{2 x+1} \cdot \frac{1}{4 x+1}}=\tan ^{-1} \frac{2}{x^{2}}$
$\Rightarrow \mathrm{x}=0,-\frac{2}{3}, 3$
but only + ve integral $\mathrm{x}=3$

