STRAIGHT LINE

Question Stem for Question No. 1 and 2

Question Stem

Consider the lines L_{1} and L_{2} defined by
$\mathrm{L}_{1}: \mathrm{x} \sqrt{2}+\mathrm{y}-1=0$ and $\mathrm{L}_{2}: \mathrm{x} \sqrt{2}-\mathrm{y}+1=0$
For a fixed constant λ, let C be the locus of a point P such that the product of the distance of P from L_{1} and the distance of P from L_{2} is λ^{2}. The line $y=2 x+1$ meets C at two points R and S, where the distance between R and S is $\sqrt{270}$.

Let the perpendicular bisector of $R S$ meet C at two distinct points R^{\prime} and S^{\prime}. Let D be the square of the distance between R' and S^{\prime}.

1. The value of λ^{2} is \qquad .
[JEE(Advanced) 2021]
2. The value of D is \qquad .
[JEE(Advanced) 2021]
3. Let $\mathrm{a}, \lambda, \mathrm{m} \in \mathbb{R}$. Consider the system of linear equations
$a x+2 y=\lambda$
$3 x-2 y=\mu$
Which of the following statement(s) is(are) correct ?
[JEE(Advanced) 2016]
(A) If $a=-3$, then the system has infinitely many solutions for all values of λ and μ
(B) If $a \neq-3$, then the system has a unique solution for all values of λ and μ
(C) If $\lambda+\mu=0$, then the system has infinitely many solutions for $\mathrm{a}=-3$
(D) If $\lambda+\mu \neq 0$, then the system has no solution for $\mathrm{a}=-3$
4. For a point P in the plane, let $d_{1}(P)$ and $d_{2}(P)$ be the distances of the point P from the lines $x-y=0$ and $x+y=0$ respectively. The area of the region R consisting of all points P lying in the first quadrant of the plane and satisfying $2 \leq \mathrm{d}_{1}(\mathrm{P})+\mathrm{d}_{2}(\mathrm{P}) \leq 4$, is
[JEE(Advanced) 2014]
5. For $\mathrm{a}>\mathrm{b}>\mathrm{c}>0$, the distance between $(1,1)$ and the point of intersection of the lines $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ and $b x+a y+c=0$ is less than $2 \sqrt{2}$. Then
[JEE(Advanced) 2014]
(A) $a+b-c>0$
(B) a - b + c <0
(C) $a-b+c>0$
(D) $a+b-c<0$

SOLUTIONS

1. Ans. (9.00)

Sol. $\left|\frac{\sqrt{2} x+y-1}{\sqrt{3}}\right|\left|\frac{\sqrt{2} x-y+1}{\sqrt{3}}\right|=\lambda^{2}$
$\left|\frac{2 x^{2}-(y-1)^{2}}{3}\right|=\lambda^{2}, C:\left|2 x^{2}-(y-1)^{2}\right|=3 \lambda^{2}$
line $y=2 x+1, R S=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$,
$R\left(x_{1}, y_{1}\right)$ and $S\left(x_{2}, y_{2}\right)$
$y_{1}=2 x_{1}+1$ and $y_{2}=2 x_{2}+1$
$\Rightarrow\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)=2\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)$
$\mathrm{RS}=\sqrt{5\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}}=\sqrt{5}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|$
solve curve C and line $y=2 x+1$ we get
$\left|2 x^{2}-(2 x)^{2}\right|=3 \lambda^{2} \Rightarrow x^{2}=\frac{3 \lambda^{2}}{2}$
$\operatorname{RS}=\sqrt{5}\left|\frac{2 \sqrt{3} \lambda}{\sqrt{2}}\right|=\sqrt{30} \lambda=\sqrt{270}$
$\Rightarrow 30 \lambda^{2}=270 \Rightarrow \lambda^{2}=9$
2. Ans. (77.14)

\perp bisector of RS
$\mathrm{T} \equiv\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)$
Here $\mathrm{x}_{1}+\mathrm{x}_{2}=0$
$\mathrm{T}=(0,1)$
Equation of
$R^{\prime} S^{\prime}:(y-1)=-\frac{1}{2}(x-0) \Rightarrow x+2 y=2$
$R^{\prime}\left(a_{1}, b_{1}\right) S^{\prime}\left(a_{2}, b_{2}\right)$
$\mathrm{D}=\left(\mathrm{a}_{1}-\mathrm{a}_{2}\right)^{2}+\left(\mathrm{b}_{1}-\mathrm{b}_{2}\right)^{2}=5\left(\mathrm{~b}_{1}-\mathrm{b}_{2}\right)^{2}$
solve $x+2 y=2$ and $\left|2 x^{2}-(y-1)^{2}\right|=3 \lambda^{2}$
$\left|8(y-1)^{2}-(y-1)^{2}\right|=3 \lambda^{2} \Rightarrow(y-1)^{2}=\left(\frac{\sqrt{3} \lambda}{\sqrt{7}}\right)^{2}$
$y-1= \pm \frac{\sqrt{3} \lambda}{\sqrt{7}} \Rightarrow b_{1}=1+\frac{\sqrt{3} \lambda}{\sqrt{7}}, b_{2}=1-\frac{\sqrt{3} \lambda}{\sqrt{17}}$
$\mathrm{D}=5\left(\frac{2 \sqrt{3} \lambda}{\sqrt{7}}\right)^{2}=\frac{5 \times 4 \times 3 \lambda^{2}}{7}$
$=\frac{5 \times 4 \times 27}{7}=77.14$
3. Ans. (B, C, D)

Sol. $\quad a x+2 y=\lambda$
$3 x-2 y=\mu$
for $\mathrm{a}=-3$ above lies will be parallel or coincident parallel for $\lambda+\mu \neq 0$ and coincident if $\lambda+\mu=0$ and if $\mathrm{a} \neq-3$ lies are intersecting
\Rightarrow unique solution.
4. Ans. (6)

Sol. Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is the point in I quad.
Now $2 \leq\left|\frac{\mathrm{x}-\mathrm{y}}{\sqrt{2}}\right|+\left|\frac{\mathrm{x}+\mathrm{y}}{\sqrt{2}}\right| \leq 4$
$2 \sqrt{2} \leq|x-y|+|x+y| \leq 4 \sqrt{2}$
Case-I: $x \geq y$
$2 \sqrt{2} \leq(x-y)+(x+y) \leq 4 \sqrt{2}$

$\Rightarrow \quad \mathrm{x} \in[\sqrt{2}, 2 \sqrt{2}]$
Case-II : $\mathrm{x}<\mathrm{y}$
$2 \sqrt{2} \leq y-x+(x+y) \leq 4 \sqrt{2}$
$\mathrm{y} \in[\sqrt{2}, 2 \sqrt{2}]$
$\mathrm{A}=(2 \sqrt{2})^{2}-(\sqrt{2})^{2}=6$
5. Ans. (A or C or A, C)

Sol.

Point of intersection of both lines is
$\left(-\frac{c}{(a+b)},-\frac{c}{(a+b)}\right)$
Distance between $\left(-\frac{c}{(a+b)},-\frac{c}{(a+b)}\right)$
$\&(1,1)$ is
Distance $=\sqrt{\frac{(a+b+c)^{2}}{(a+b)^{2}} \times 2}<2 \sqrt{2}$
$a+b+c<2(a+b)$
$a+b-c>0$
According to given condition option (C) also correct.

