QUADRATIC EQUATION

1. For $\mathrm{x} \in \mathbb{R}$, then number of real roots of the equation $3 \mathrm{x}^{2}-4\left|\mathrm{x}^{2}-1\right|+\mathrm{x}-1=0$ is \qquad .
[JEE(Advanced) 2022]
2. Suppose a, b denote the distinct real roots of the quadratic polynomial $x^{2}+20 x-2020$ and suppose c, d denote the distinct complex roots of the quadratic polynomial $x^{2}-20 x+2020$. Then the value of $a c(a-c)+a d(a-d)+b c(b-c)+b d(b-d)$ is
[JEE(Advanced) 2020]
(A) 0
(B) 8000
(C) 8080
(D) 16000

Paragraph for Question No. 3 and 4

Let p, q be integers and let α, β be the roots of the equation, $\mathrm{x}^{2}-\mathrm{x}-1=0$, where $\alpha \neq \beta$.
For $n=0,1,2, \ldots$, , let $a_{n}=p \alpha^{n}+q \beta^{n}$.
FACT : If a and b are rational numbers and $\mathrm{a}+\mathrm{b} \sqrt{5}=0$, then $\mathrm{a}=0=\mathrm{b}$.
3. If $\mathrm{a}_{4}=28$, then $\mathrm{p}+2 \mathrm{q}=$
[JEE(Advanced) 2017]
(A) 14
(B) 7
(C) 12
(D) 21
4. $\mathrm{a}_{12}=$
[JEE(Advanced) 2017]
(A) $2 a_{11}+a_{10}$
(B) $a_{11}-a_{10}$
(C) $a_{11}+a_{10}$
(D) $\mathrm{a}_{11}+2 \mathrm{a}_{10}$
5. Let $-\frac{\pi}{6}<\theta<-\frac{\pi}{12}$. Suppose α_{1} and β_{1} are the roots of the equation $\mathrm{x}^{2}-2 \mathrm{xsec} \theta+1=0$ and α_{2} and β_{2} are the roots of the equation $x^{2}+2 x \tan \theta-1=0$. If $\alpha_{1}>\beta_{1}$ and $\alpha_{2}>\beta_{2}$, then $\alpha_{1}+\beta_{2}$ equals
[JEE(Advanced) 2016]
(A) $2(\sec \theta-\tan \theta)$
(B) $2 \sec \theta$
(C) $-2 \tan \theta$
(D) 0
6. Let S be the set of all non-zero numbers α such that the quadratic equation $\alpha x^{2}-x+\alpha=0$ has two distinct real roots x_{1} and x_{2} satisfying the inequality $\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|<1$. Which of the following intervals is(are) a subset(s) of S ?
[JEE(Advanced) 2015]
(A) $\left(-\frac{1}{2},-\frac{1}{\sqrt{5}}\right)$
(B) $\left(-\frac{1}{\sqrt{5}}, 0\right)$
(C) $\left(0, \frac{1}{\sqrt{5}}\right)$
(D) $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

SOLUTIONS

1. Ans. (4)

Sol. $3 \mathrm{x}^{2}+\mathrm{x}-1=4\left|\mathrm{x}^{2}-1\right|$
If $\mathrm{x} \in[-1,1]$,
$3 x^{2}+x-1=-4 x^{2}+4 \Rightarrow 7 x^{2}+x-5=0$

say $f(\mathrm{x})=7 \mathrm{x}^{2}+\mathrm{x}-5$
$f(1)=3 ; f(-1)=1 ; f(0)=-1$

[Two Roots]

If $x \in(-\infty,-1] \cup[1, \infty)$

$3 x^{2}+x-1=4 x^{2}-4 \Rightarrow x^{2}-x-3=0$
Say $g(x)=x^{2}-x-3$
$g(-1)=-1 ; g(1)=-3$
[Two Roots]
So total 4 roots.
2. Ans. (D)

Sol. $x^{2}+20 x-2020=0$ has two roots $a, b \in R$
$x^{2}-20 x+2020=0$ has two roots $c, d \in$ complex
$\mathrm{ac}(\mathrm{a}-\mathrm{c})+\mathrm{ad}(\mathrm{a}-\mathrm{d})+\mathrm{bc}(\mathrm{b}-\mathrm{c})+\mathrm{bd}(\mathrm{b}-\mathrm{d})$
$=a^{2} c-a c^{2}+a^{2} d-a d^{2}+b^{2} c-b c^{2}+b^{2} d-b d^{2}$
$=a^{2}(c+d)+b^{2}(c+d)-c^{2}(a+b)-d^{2}(a+b)$
$=(c+d)\left(a^{2}+b^{2}\right)-(a+b)\left(c^{2}+d^{2}\right)$
$=(c+d)\left((a+b)^{2}-2 a b\right)-(a+b)\left((c+d)^{2}-2 c d\right)$
$=20\left[(20)^{2}+4040\right]+20\left[(20)^{2}-4040\right]$
$=20\left[(20)^{2}+4040+(20)^{2}-4040\right]$
$=20 \times 800=16000$
3. Ans. (C)

Sol. $\alpha^{2}=\alpha+1 \Rightarrow \alpha^{4}=3 \alpha+2$
$\therefore \mathrm{a}_{4}=28 \Rightarrow \mathrm{p} \alpha^{4}+\mathrm{q} \beta^{4}=\mathrm{p}(3 \alpha+2)+\mathrm{q}(3 \beta+2)$
$=28$
$\Rightarrow \quad \mathrm{p}(3 \alpha+2)+\mathrm{q}(3-3 \alpha+2)=28$
$\Rightarrow \quad \alpha(3 p-3 q)+2 p+5 q=28$
(as $\alpha \in \mathrm{Q}^{\mathrm{c}}$)
$\Rightarrow \mathrm{p}=\mathrm{q}, 2 \mathrm{p}+5 \mathrm{q}=28 \Rightarrow \mathrm{p}=\mathrm{q}=4$
$\therefore \quad p+2 q=12$
4. Ans. (C)

Sol. $\quad \alpha^{2}=\alpha+1 \Rightarrow \alpha^{n}=\alpha^{\mathrm{n}-1}+\alpha^{\mathrm{n}-2}$
$\Rightarrow \mathrm{p} \alpha^{\mathrm{n}}+\mathrm{q} \beta^{\mathrm{n}}=\mathrm{p}\left(\alpha^{\mathrm{n}-1}+\alpha^{\mathrm{n}-2}\right)+\mathrm{q}\left(\beta^{\mathrm{n}-1}+\beta^{\mathrm{n}-2}\right)$

$$
a_{n}=a_{n-1}+a_{n-2}
$$

$\Rightarrow a_{12}=a_{11}+a_{10}$
5. Ans. (C)

Sol. $\alpha_{1}=\frac{2 \sec \theta+\sqrt{4 \sec ^{2} \theta-4}}{2}$
$\beta_{2}=\frac{-2 \tan \theta \pm \sqrt{4 \tan ^{2} \theta+4}}{2} \quad\left\{\because \alpha_{2}>\beta_{2}\right\}$
$\alpha_{1}=\sec \theta+|\tan \theta| \quad\left\{\because \alpha_{1}>\beta_{1}\right\}$
$\beta_{2}=-\tan \theta-\sec \theta$
$\alpha_{1}=\sec \theta-\tan \theta \quad\left(\because \theta \in\left(-\frac{\pi}{6},-\frac{\pi}{12}\right)\right)$
$\alpha_{1}+\beta_{2}=-2 \tan \theta$
6. Ans. (A, D)

Sol. $\alpha x^{2}-x+\alpha=0$
$D=1-4 \alpha^{2}$
distinct real roots $\mathrm{D}>0$
$\Rightarrow \alpha \in\left(-\frac{1}{2}, \frac{1}{2}\right)$
given $\left|x_{1}-x_{2}\right|<1$
$\Rightarrow \frac{\sqrt{1-4 \alpha^{2}}}{|\alpha|}<1$
$\Rightarrow 1-4 \alpha^{2}<\alpha^{2}$
$\Rightarrow \alpha \in\left(-\infty, \frac{-1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \infty\right)$.
from (i) \& (ii)
$\alpha \in\left(\frac{-1}{2}, \frac{-1}{\sqrt{5}}\right) \cup\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

