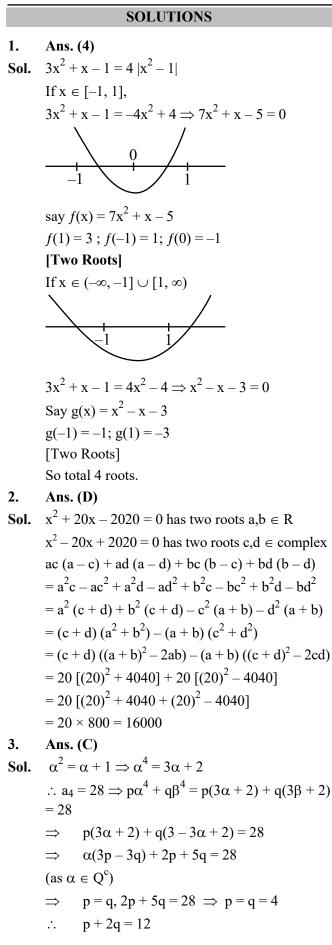
JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions **ALLEN**[®] **QUADRATIC EQUATION** For $x \in \mathbb{R}$, then number of real roots of the equation $3x^2 - 4|x^2 - 1| + x - 1 = 0$ is 1. [JEE(Advanced) 2022] Suppose a, b denote the distinct real roots of the quadratic polynomial $x^2 + 20x - 2020$ and suppose c, d 2. denote the distinct complex roots of the quadratic polynomial $x^2 - 20x + 2020$. Then the value of ac(a-c) + ad(a-d) + bc(b-c) + bd(b-d) is [JEE(Advanced) 2020] (A) 0 (B) 8000 (C) 8080 (D) 16000 Paragraph for Question No. 3 and 4 Let p,q be integers and let α , β be the roots of the equation, $x^2 - x - 1 = 0$, where $\alpha \neq \beta$. For $n = 0, 1, 2, ..., let a_n = p\alpha^n + q\beta^n$. FACT : If a and b are rational numbers and $a + b\sqrt{5} = 0$, then a = 0 = b. 3. If $a_4 = 28$, then p + 2q =[JEE(Advanced) 2017] (A) 14 **(B)** 7 (C) 12 (D) 21 [JEE(Advanced) 2017] 4. $a_{12} =$ (B) $a_{11} - a_{10}$ (C) $a_{11} + a_{10}$ (A) $2a_{11} + a_{10}$ (D) $a_{11} + 2a_{10}$ Let $-\frac{\pi}{6} < \theta < -\frac{\pi}{12}$. Suppose α_1 and β_1 are the roots of the equation $x^2 - 2x \sec \theta + 1 = 0$ and α_2 and β_2 are 5. the roots of the equation $x^2 + 2x\tan\theta - 1 = 0$. If $\alpha_1 > \beta_1$ and $\alpha_2 > \beta_2$, then $\alpha_1 + \beta_2$ equals [JEE(Advanced) 2016] (A) $2(\sec\theta - \tan\theta)$ (B) $2sec\theta$ (C) $-2\tan\theta$ (D) 0Let S be the set of all non-zero numbers α such that the quadratic equation $\alpha x^2 - x + \alpha = 0$ has two 6. distinct real roots x_1 and x_2 satisfying the inequality $|x_1 - x_2| < 1$. Which of the following intervals is(are) a subset(s) of S? [JEE(Advanced) 2015]

(A) $\left(-\frac{1}{2}, -\frac{1}{\sqrt{5}}\right)$ (B) $\left(-\frac{1}{\sqrt{5}}, 0\right)$ (C) $\left(0, \frac{1}{\sqrt{5}}\right)$ (D) $\left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$

1

ALLEN®



4. Ans. (C)
Sol.
$$\alpha^2 = \alpha + 1 \Rightarrow \alpha^n = \alpha^{n-1} + \alpha^{n-2}$$

 $\Rightarrow p\alpha^n + q\beta^n = p(\alpha^{n-1} + \alpha^{n-2}) + q(\beta^{n-1} + \beta^{n-2})$
 $a_n = a_{n-1} + a_{n-2}$
 $\Rightarrow a_{12} = a_{11} + a_{10}$
5. Ans. (C)
Sol. $\alpha_1 = \frac{2 \sec \theta + \sqrt{4 \sec^2 \theta - 4}}{2}$ {:: $\alpha_2 > \beta_2$ }
 $\alpha_1 = \sec \theta + |\tan \theta|$ {:: $\alpha_1 > \beta_1$ }
 $\beta_2 = -\tan \theta - \sec \theta$
 $\alpha_1 = \sec \theta - \tan \theta$ (:: $\theta \in \left(-\frac{\pi}{6}, -\frac{\pi}{12}\right)$)
 $\alpha_1 + \beta_2 = -2\tan \theta$
6. Ans. (A, D)
Sol. $\alpha x^2 - x + \alpha = 0$
 $D = 1 - 4\alpha^2$
distinct real roots $D > 0$
 $\Rightarrow \alpha \in \left(-\frac{1}{2}, \frac{1}{2}\right)$...(i)
given $|x_1 - x_2| < 1$
 $\Rightarrow \frac{\sqrt{1 - 4\alpha^2}}{|\alpha|} < 1$
 $\Rightarrow 1 - 4\alpha^2 < \alpha^2$
 $\Rightarrow \alpha \in \left(-\infty, \frac{-1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$...(ii)
from (i) & (ii)
 $\alpha \in \left(\frac{-1}{2}, \frac{-1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \frac{1}{2}\right)$