PARABOLA

1. Let P be a point on the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, where $\mathrm{a}>0$. The normal to the parabola at P meets the x-axis at a point Q . The area of the triangle PFQ , where F is the focus of the parabola, is 120 . If the slope m of the normal and a are both positive integers, then the pair (a, m) is
[JEE(Advanced) 2023]
(A) $(2,3)$
(B) $(1,3)$
(C) $(2,4)$
(D) $(3,4)$
2. Consider the parabola $y^{2}=4 x$. Let S be the focus of the parabola. A pair of tangents drawn to the parabola from the point $P=(-2,1)$ meet the parabola at P_{1} and P_{2}. Let Q_{1} and Q_{2} be points on the lines SP_{1} and $S P_{2}$ respectively such that $P Q_{1}$ is perpendicular to $S P_{1}$ and PQ_{2} is perpendicular to $S P_{2}$. Then, which of the following is/are TRUE?
[JEE(Advanced) 2022]
(A) $\mathrm{SQ}_{1}=2$
(B) $\mathrm{Q}_{1} \mathrm{Q}_{2}=\frac{3 \sqrt{10}}{5}$
(C) $\mathrm{PQ}_{1}=3$
(D) $\mathrm{SQ}_{2}=1$
3. Let E denote the parabola $y^{2}=8 x$. Let $P=(-2,4)$, and let Q and Q^{\prime} be two distinct points on E such that the lines PQ and PQ' are tangents to E. Let F be the focus of E. Then which of the following statements is (are) TRUE?
[JEE(Advanced) 2021]
(A) The triangle PFQ is a right-angled triangle
(B) The triangle QPQ^{\prime} is a right-angled triangle
(C) The distance between P and F is $5 \sqrt{2}$
(D) F lies on the line joining Q and Q^{\prime}

Question Stem for Questions Nos. 4 and 5

Question Stem

Consider the region $\mathrm{R}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R} \times \mathbb{R}: \mathrm{x} \geq 0\right.$ and $\left.\mathrm{y}^{2} \leq 4-\mathrm{x}\right\}$. Let F be the family of all circles that are contained in R and have centers on the x -axis. Let C be the circle that has largest radius among the circles in F. Let (α, β) be a point where the circle C meets the curve $\mathrm{y}^{2}=4-\mathrm{x}$.
4. The radius of the circle C is \qquad .
[JEE(Advanced) 2021]
5. The value of α is \qquad .
[JEE(Advanced) 2021]
6. If a chord, which is not a tangent, of the parabola $y^{2}=16 x$ has the equation $2 x+y=p$, and midpoint (h, k), then which of the following is(are) possible value(s) of p, h and k ?
[JEE(Advanced) 2017]
(A) $\mathrm{p}=5, \mathrm{~h}=4, \mathrm{k}=-3$
(B) $\mathrm{p}=-1, \mathrm{~h}=1, \mathrm{k}=-3$
(C) $\mathrm{p}=-2, \mathrm{~h}=2, \mathrm{k}=-4$
(D) $\mathrm{p}=2, \mathrm{~h}=3, \mathrm{k}=-4$
7. Let P be the point on the parabola $y^{2}=4 x$ which is at the shortest distance from the center S of the circle $x^{2}+y^{2}-4 x-16 y+64=0$. Let Q be the point on the circle dividing the line segment SP internally. Then-
(A) $\mathrm{SP}=2 \sqrt{5}$
(B) $\mathrm{SQ}: \mathrm{QP}=(\sqrt{5}+1): 2$
(C) the x -intercept of the normal to the parabola at P is 6
(D) the slope of the tangent to the circle at Q is $\frac{1}{2}$
[JEE(Advanced) 2016]
8. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{2}+(y+2)^{2}=r^{2}$, then the value of r^{2} is
[JEE(Advanced) 2015]
9. Let the curve C be the mirror image of the parabola $y^{2}=4 x$ with respect to the line $x+y+4=0$. If A and B are the points of intersection of C with the line $y=-5$, then the distance between A and B is
[JEE(Advanced) 2015]
10. Let P and Q be distinct points on the parabola $y^{2}=2 x$ such that a circle with $P Q$ as diameter passes through the vertex O of the parabola. If P lies in the first quadrant and the area of the triangle $\triangle \mathrm{OPQ}$ is $3 \sqrt{2}$, then which of the following is(are) the coordinates of P ?
[JEE(Advanced) 2015]
(A) $(4,2 \sqrt{2})$
(B) $(9,3 \sqrt{2})$
(C) $\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$
(D) $(1, \sqrt{2})$
11. The common tangents to the circle $x^{2}+y^{2}=2$ and the parabola $y^{2}=8 x$ touch the circle at the point P, Q and the parabola at the points R, S. Then the area of the quadrilateral PQRS is -
[JEE(Advanced) 2014]
(A) 3
(B) 6
(C) 9
(D) 15

Paragraph For Questions 12 and 13

Let a,r,s,t be nonzero real numbers. Let $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right), \mathrm{Q}, \mathrm{R}\left(\mathrm{ar}^{2}, 2 \mathrm{ar}\right)$ and $\mathrm{S}\left(\mathrm{as}^{2}, 2 \mathrm{as}\right)$ be distinct points on the parabola $y^{2}=4 a x$. Suppose that $P Q$ is the focal chord and lines $Q R$ and $P K$ are parallel, where K is the point (2a, 0).
12. The value of r is-
[JEE(Advanced) 2014]
(A) $-\frac{1}{\mathrm{t}}$
(B) $\frac{\mathrm{t}^{2}+1}{\mathrm{t}}$
(C) $\frac{1}{\mathrm{t}}$
(D) $\frac{\mathrm{t}^{2}-1}{\mathrm{t}}$
13. If st $=1$, then the tangent at P and the normal at S to the parabola meet at a point whose ordinate is-
[JEE(Advanced) 2014]
(A) $\frac{\left(\mathrm{t}^{2}+1\right)^{2}}{2 \mathrm{t}^{3}}$
(B) $\frac{a\left(t^{2}+1\right)^{2}}{2 t^{3}}$
(C) $\frac{\mathrm{a}\left(\mathrm{t}^{2}+1\right)^{2}}{\mathrm{t}^{3}}$
(D) $\frac{\mathrm{a}\left(\mathrm{t}^{2}+2\right)^{2}}{\mathrm{t}^{3}}$

SOLUTIONS

1. Ans. (A)

Sol. Let point $\mathrm{P}\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)$
normal at P is $y=-t x+2 a t+a t^{3}$
$y=0, x=2 a+a t^{2}$
$Q\left(2 a+a t^{2}, 0\right)$

Area of $\triangle \mathrm{PFQ}=\left|\frac{1}{2}\left(\mathrm{a}+\mathrm{at}^{2}\right)(2 \mathrm{at})\right|=120$
$\because \mathrm{m}=-\mathrm{t}$
$\because a^{2}\left[1+m^{2}\right] m=120$
$(a, m)=(2,3)$ will satisfy
2. Ans. (B, C, D)

Sol. Let equation of tangent with slope ' m ' be

$\mathrm{T}: \mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$
$\mathrm{T}:$ passes through $(-2,1)$ so
$1=-2 m+\frac{1}{m}$
$\Rightarrow \mathrm{m}=-1$ or $\mathrm{m}=\frac{1}{2}$
Points are given by $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
So, one point will be $(1,-2) \&(4,4)$

Let $P_{1}(4,4) \& P_{2}(1,-2)$
$\mathrm{P}_{1} \mathrm{~S}: 4 \mathrm{x}-3 \mathrm{y}-4=0$
$\mathrm{P}_{2} \mathrm{~S}: \mathrm{x}-1=0$
$P Q_{1}=\left|\frac{4(-2)-3(1)-4}{5}\right|=3$
$\mathrm{SP}=\sqrt{10} ; \mathrm{PQ}_{2}=3 ; \mathrm{SQ}_{1}=1=\mathrm{SQ}_{2}$
$\frac{1}{2}\left(\frac{\mathrm{Q}_{1} \mathrm{Q}_{2}}{2}\right) \times \sqrt{10}=\frac{1}{2} \times 3 \times 1$
(comparing Areas)
$\Rightarrow \mathrm{Q}_{1} \mathrm{Q}_{2}=\frac{2 \times 3}{\sqrt{10}}=\frac{3 \sqrt{10}}{5}$
3. Ans. (A, B, D)

Sol.

Note that P lies on directrix so triangle PQQ^{\prime} is right angled, hence QQ^{\prime} passes through focus F .
$\mathrm{PF}=4 \sqrt{2}$
Equation of QF is $\mathrm{y}=\mathrm{x}-2 \& \mathrm{PF}$ is $\mathrm{x}+\mathrm{y}=2$
Hence A, B, D.
4. Ans. (1.50)

Sol.

Let the circle be
$x^{2}+y^{2}+\lambda x=0$
For point of intersection of circle \& parabola $y^{2}=4-x$.
$x^{2}+4-x+\lambda x=0 \Rightarrow x^{2}+x(\lambda-1)+4=0$
For tangency : $\Delta=0 \Rightarrow(\lambda-1)^{2}-16=0$
$\Rightarrow \lambda=5$ (rejected) or $\lambda=-3$
Circle : $x^{2}+y^{2}-3 x=0$
Radius $=\frac{3}{2}=1.5$
5. Ans. (2.00)

Sol. For point of intersection :
$x^{2}-4 x+4=0 \Rightarrow x=2$ so $\alpha=2$
6. Ans. (D)

Sol. Equation of chord with mid point (h, k) :
k.y $-16\left(\frac{\mathrm{x}+\mathrm{h}}{2}\right)=\mathrm{k}^{2}-16 \mathrm{~h}$
$\Rightarrow \quad 8 \mathrm{x}-\mathrm{ky}+\mathrm{k}^{2}-8 \mathrm{~h}=0$
Comparing with $2 \mathrm{x}+\mathrm{y}-\mathrm{p}=0$, we get
$\mathrm{k}=-4 ; 2 \mathrm{~h}-\mathrm{p}=4$
only (D) satisfies above relation.
7. Ans. (A, C, D)

Sol.

$y^{2}=4 x$
point P lies on normal to parabola passing through centre of circle
$y+t x=2 t+t^{3}$
$8+2 t=2 t+t^{3}$
$t=2$
$\mathrm{P}(4,4)$
$\mathrm{SP}=\sqrt{(4-2)^{2}+(4-8)^{2}}$
$\mathrm{SP}=2 \sqrt{5}$
$S Q=2$
$\Rightarrow \quad \mathrm{PQ}=2 \sqrt{5}-2$
$\frac{\mathrm{SQ}}{\mathrm{QP}}=\frac{1}{\sqrt{5}-1}=\frac{\sqrt{5}+1}{4}$
To find x intercept
put $y=0$ in (i)
$\Rightarrow \quad \mathrm{x}=2+\mathrm{t}^{2}$
$x=6$
$\because \quad$ Slope of common normal $=-t=-2$
$\therefore \quad$ Slope of tangent $=\frac{1}{2}$
8. Ans. (2)

Sol.

The co-ordinates of latus rectum are $(1,2)$ and $(1,-2)$
clearly slope of tangent is given by $\frac{d y}{d x}=\frac{2}{y}$
\therefore At $\mathrm{y}=2$ slope of normal $=-1$
and At $y=-2$ slope of normal $=1$
\therefore Equation of normal at $(1,2)$
$(y-2)=-1(x-1) \Rightarrow x+y=3$
Now, this line is tangent to circle
$(x-3)^{2}+(y+2)^{2}=r^{2}$
\therefore perpendicular distance from centre to line
$=$ Radius of circle
$\therefore \frac{|3-2-3|}{\sqrt{2}}=r \Rightarrow r^{2}=2$
9. Ans. (4)

Sol. Let there be a point $\left(t^{2}, 2 t\right)$ on $y^{2}=4 x$
Clearly its reflection in $x+y+4=0$ is given by
$\frac{x-t^{2}}{1}=\frac{y-2 t}{1}=\frac{-2\left(t^{2}+2 t+4\right)}{2}$
$\therefore \quad \mathrm{x}=-(2 \mathrm{t}+4) \& \mathrm{y}=-\left(\mathrm{t}^{2}+4\right)$
Now, $y=-5 \quad \Rightarrow \quad t= \pm 1$
$\therefore \quad \mathrm{x}=-6 \quad$ or $\quad \mathrm{x}=-2$
$\therefore \quad$ Distance between A \& B $=4$
10. Ans. (A, D)

Sol.

$\because \angle \mathrm{POQ}=\frac{\pi}{2} \quad \Rightarrow \quad \mathrm{t}_{1} \mathrm{t}_{2}=-4$
$\therefore \quad\left|\frac{1}{2}\right| \begin{array}{ccc}0 & 0 & 1 \\ \frac{\mathrm{t}_{1}^{2}}{2} & \mathrm{t}_{1} & 1 \\ \frac{\mathrm{t}_{2}^{2}}{2} & \mathrm{t}_{2} & 1\end{array}|\mid=3 \sqrt{2}$
$\Rightarrow \quad\left|\frac{\mathrm{t}_{1}^{2} \mathrm{t}_{2}-\mathrm{t}_{1} \mathrm{t}_{2}^{2}}{2}\right|=6 \sqrt{2}$
$\Rightarrow \quad\left|t_{1}-t_{2}\right|=3 \sqrt{2}$
$\Rightarrow \quad \mathrm{t}_{1}+\frac{4}{\mathrm{t}_{1}}=3 \sqrt{2} \quad\left(\because \quad \mathrm{t}_{1}>0\right)$
We get $\mathrm{t}_{1}=2 \sqrt{2}, \sqrt{2}$
$\mathrm{P}(4,2 \sqrt{2})$ or $(1, \sqrt{2})$
11. Ans. (D)

Sol.

$\mathrm{y}=\mathrm{mx}+\frac{2}{\mathrm{~m}}$
$\frac{\left|0-0+\frac{2}{\mathrm{~m}}\right|}{\sqrt{1+\mathrm{m}^{2}}}=\sqrt{2} \Rightarrow 2=\mathrm{m}^{2}\left(1+\mathrm{m}^{2}\right)$
$\Rightarrow \mathrm{m}= \pm 1$
TP : $-\mathrm{x}+\mathrm{y}=2$
So $P(-1,1) \& Q(-1,-1)$
$\& \mathrm{R}\left(\frac{2}{\mathrm{~m}}, \frac{4}{\mathrm{~m}}\right) \equiv \mathrm{R}(2,4) \& \mathrm{~S}(2,-4)$
So $\Delta=\frac{1}{2} 10.3=15$
So $\mathrm{P}(-1,1) \& \mathrm{Q}(-1,-1)$
$\& \mathrm{R}\left(\frac{2}{\mathrm{~m}}, \frac{4}{\mathrm{~m}}\right) \equiv \mathrm{R}(2,4) \& \mathrm{~S}(2,-4)$
So $\Delta=\frac{1}{2} 10.3=15$
12. Ans. (D)

Sol.

$\because \mathrm{PQ}$ is a focal chord
\therefore co-ordinates of point Q are $=\left(\frac{\mathrm{a}}{\mathrm{t}^{2}},-\frac{2 \mathrm{a}}{\mathrm{t}}\right)$
$\mathrm{m}_{\mathrm{QR}}=\frac{2 \mathrm{a}\left(\mathrm{r}+\frac{1}{\mathrm{t}}\right)}{\mathrm{a}\left(\mathrm{r}^{2}-\frac{1}{\mathrm{t}^{2}}\right)}=\frac{2}{\left(\mathrm{r}-\frac{1}{\mathrm{t}}\right)}$
$\mathrm{m}_{\mathrm{PK}}=\frac{2 \mathrm{at}-0}{\mathrm{a}\left(\mathrm{t}^{2}-2\right)}=\frac{2 \mathrm{t}}{\mathrm{t}^{2}-2}$
Given $\mathrm{m}_{\mathrm{QR}}=\mathrm{m}_{\mathrm{PK}}$
$\Rightarrow \frac{2}{\mathrm{r}-\frac{1}{\mathrm{t}}}=\frac{2 \mathrm{t}}{\mathrm{t}^{2}-2} \Rightarrow \mathrm{r}=\frac{\mathrm{t}^{2}-2}{\mathrm{t}}+\frac{1}{\mathrm{t}}$
$\Rightarrow \mathrm{r}=\mathrm{t}-\frac{2}{\mathrm{t}}+\frac{1}{\mathrm{t}} \Rightarrow \mathrm{r}=\frac{\mathrm{t}^{2}-1}{\mathrm{t}}$
13. Ans. (B)

Sol. Equation of tangent at point P is
$t y=x+a t^{2}$
Equation of normal at point S is
$\frac{1}{t} x+y=\frac{2 a}{t}+\frac{a}{t^{3}}$
$\Rightarrow \quad t^{2} x+t^{3} y=2 a t^{2}+a$
Multiply equation (i) by t^{2} and then subtract from equation (ii),
we get,

$$
\begin{aligned}
& 2 t^{3} y=2 a t^{2}+a t^{4}+a \\
\Rightarrow & 2 t^{3} y=a\left(1+t^{4}+2 t^{2}\right) \\
\Rightarrow & y=\frac{a\left(1+t^{2}\right)^{2}}{2 t^{3}}
\end{aligned}
$$

