MATRIX

1. Let $\mathrm{M}=\left(\mathrm{a}_{\mathrm{ij}}\right), \mathrm{i}, \mathrm{j} \in\{1,2,3\}$, be the 3×3 matrix such that $\mathrm{a}_{\mathrm{ij}}=1$ if $\mathrm{j}+1$ is divisible by i , otherwise $\mathrm{a}_{\mathrm{ij}}=0$. Then which of the following statements is (are) true?
[JEE(Advanced) 2023]
(A) M is invertible
(B) There exists a nonzero column matrix $\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)$ such that $\mathrm{M}\left(\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right)=\left(\begin{array}{l}-a_{1} \\ -a_{2} \\ -a_{3}\end{array}\right)$
(C) The set $\left\{\mathrm{X} \in \mathbb{R}^{3}: \mathrm{MX}=0\right\} \neq\{0\}$, where $0=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
(D) The matrix $(\mathrm{M}-2 \mathrm{I})$ is invertible, where I is the 3×3 identity matrix
2. Let $\mathrm{R}=\left\{\left(\begin{array}{lll}\mathrm{a} & 3 & \mathrm{~b} \\ \mathrm{c} & 2 & \mathrm{~d} \\ 0 & 5 & 0\end{array}\right): \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d} \in\{0,3,5,7,11,13,17,19\}\right\}$. Then the number of invertible matrices in R is
[JEE(Advanced) 2023]
3. Let β be a real number. Consider the matrix

$$
A=\left(\begin{array}{ccc}
\beta & 0 & 1 \\
2 & 1 & -2 \\
3 & 1 & -2
\end{array}\right)
$$

If $A^{7}-(\beta-1) A^{6}-\beta A^{5}$ is a singular matrix, then the value of 9β is \qquad . [JEE(Advanced) 2022]
4. If $\mathrm{M}=\left(\begin{array}{cc}\frac{5}{2} & \frac{3}{2} \\ -\frac{3}{2} & -\frac{1}{2}\end{array}\right)$, then which of the following matrices is equal to M^{2022} ?
[JEE(Advanced) 2022$]$
(A) $\left(\begin{array}{cc}3034 & 3033 \\ -3033 & -3032\end{array}\right)$
(B) $\left(\begin{array}{ll}3034 & -3033 \\ 3033 & -3032\end{array}\right)$
(C) $\left(\begin{array}{cc}3033 & 3032 \\ -3032 & -3031\end{array}\right)$
(D) $\left(\begin{array}{cc}3032 & 3031 \\ -3031 & -3030\end{array}\right)$
5. For any 3×3 matrix M, let $|M|$ denote the determinant of M. Let
[JEE(Advanced) 2021]

$$
\mathrm{E}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 3 & 4 \\
8 & 13 & 18
\end{array}\right], \mathrm{P}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \text { and } \mathrm{F}=\left[\begin{array}{ccc}
1 & 3 & 2 \\
8 & 18 & 13 \\
2 & 4 & 3
\end{array}\right]
$$

If Q is a nonsingular matrix of order 3×3, then which of the following statements is (are) TRUE ?
(A) $\mathrm{F}=\mathrm{PEP}$ and $\mathrm{P}^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(B) $\left|\mathrm{EQ}+\mathrm{PFQ}^{-1}\right|=|\mathrm{EQ}|+\left|\mathrm{PFQ}^{-1}\right|$
(C) $\left|(\mathrm{EF})^{3}\right|>|\mathrm{EF}|^{2}$
(D) Sum of the diagonal entries of $\mathrm{P}^{-1} \mathrm{EP}+\mathrm{F}$ is equal to the sum of diagonal entries of $\mathrm{E}+\mathrm{P}^{-1} \mathrm{FP}$
6. For any 3×3 matrix M , let $|\mathrm{M}|$ denote the determinant of M . Let I be the 3×3 identity matrix. Let E and F be two 3×3 matrices such that $(\mathrm{I}-\mathrm{EF})$ is invertible. If $\mathrm{G}=(\mathrm{I}-\mathrm{EF})^{-1}$, then which of the following statements is (are) TRUE ?
[JEE(Advanced) 2021]
(A) $|\mathrm{FE}|=|\mathrm{I}-\mathrm{FE}||\mathrm{FGE}|$
(B) $(\mathrm{I}-\mathrm{FE})(\mathrm{I}+\mathrm{FGE})=\mathrm{I}$
(C) $\mathrm{EFG}=\mathrm{GEF}$
(D) $(\mathrm{I}-\mathrm{FE})(\mathrm{I}-\mathrm{FGE})=\mathrm{I}$
7. Let M be a 3×3 invertible matrix with real entries and let I denote the 3×3 identity matrix. If $\mathrm{M}^{-1}=\operatorname{adj}(\operatorname{adj} \mathrm{M})$, then which of the following statement is/are ALWAYS TRUE ?
[JEE(Advanced) 2020]
(A) $M=I$
(B) $\operatorname{det} \mathrm{M}=1$
(C) $\mathrm{M}^{2}=\mathrm{I}$
(D) $(\operatorname{adj} \mathrm{M})^{2}=\mathrm{I}$
8. The trace of a square matrix is defined to be the sum of its diagonal entries. If A is a 2×2 matrix such that the trace of A is 3 and the trace of A^{3} is -18 , then the value of the determinant of A is \qquad -
[JEE(Advanced) 2020]
9. Let $\mathrm{M}=\left[\begin{array}{cc}\sin ^{4} \theta & -1-\sin ^{2} \theta \\ 1+\cos ^{2} \theta & \cos ^{4} \theta\end{array}\right]=\alpha \mathrm{I}+\beta \mathrm{M}^{-1}$, where $\alpha=\alpha(\theta)$ and $\beta=\beta(\theta)$ are real number, and I is the 2×2 identity matrix. If α^{*} is the minimum of the set $\{\alpha(\theta): \theta \in[0,2 \pi)\}$ and
β^{*} is the minimum of the set $\{\beta(\theta): \theta \in[0,2 \pi)\}$,
then the value of $\alpha^{*}+\beta^{*}$ is
[JEE(Advanced) 2019]
(A) $-\frac{37}{16}$
(B) $-\frac{29}{16}$
(C) $-\frac{31}{16}$
(D) $-\frac{17}{16}$
10. Let $\mathrm{M}=\left[\begin{array}{lll}0 & 1 & \mathrm{a} \\ 1 & 2 & 3 \\ 3 & \mathrm{~b} & 1\end{array}\right]$ and $\operatorname{adjM}=\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]$ where a and b are real numbers. Which of the following options is/are correct?
[JEE(Advanced) 2019]
(A) $a+b=3$
(B) $\operatorname{det}\left(a d j M^{2}\right)=81$
(C) $(\operatorname{adjM})^{-1}+\operatorname{adjM}^{-1}=-M$
(D) If $M\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, then $\alpha-\beta+\gamma=3$
11. Let $\mathrm{P}_{1}=\mathrm{I}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \mathrm{P}_{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \mathrm{P}_{3}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \mathrm{P}_{4}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \mathrm{P}_{5}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, $\mathrm{P}_{6}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ and $\mathrm{X}=\sum_{\mathrm{k}=1}^{6} \mathrm{P}_{\mathrm{K}}\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1\end{array}\right] \mathrm{P}_{\mathrm{K}}^{\mathrm{T}}$ where $\mathrm{P}_{\mathrm{K}}^{\mathrm{T}}$ denotes the transpose of the matrix P_{K}. Then which of the following options is/are correct?
[JEE(Advanced) 2019]
(A) $\mathrm{X}-30 \mathrm{I}$ is an invertible matrix
(B) The sum of diagonal entries of X is 18
(C) If $\mathrm{X}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\alpha\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, then $\alpha=30 \mathrm{x}$
(D) X is a symmetric matrix
12. Let $\mathrm{x} \in \mathbb{R}$ and let $\mathrm{P}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3\end{array}\right], \mathrm{Q}=\left[\begin{array}{lll}2 & \mathrm{x} & \mathrm{x} \\ 0 & 4 & 0 \\ \mathrm{x} & \mathrm{x} & 6\end{array}\right]$ and $\mathrm{R}=\mathrm{PQP}{ }^{-1}$.

Then which of the following options is/are correct?
[JEE(Advanced) 2019]
(A) For $\mathrm{x}=1$, there exists a unit vector $\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}}$ for which $\mathrm{R}\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(B) There exists a real number x such that $\mathrm{PQ}=\mathrm{QP}$
(C) $\operatorname{det} R=\operatorname{det}\left[\begin{array}{lll}2 & x & x \\ 0 & 4 & 0 \\ x & x & 5\end{array}\right]+8$, for all $x \in \mathbb{R}$
(D) For $x=0$, if $R\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]=6\left[\begin{array}{l}1 \\ a \\ b\end{array}\right]$, then $a+b=5$
13. Let S be the set of all column matrices $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ such that $b_{1}, b_{2}, b_{3} \in \mathbb{R}$ and the system of equations (in real variables)

$$
\begin{aligned}
-x+2 y+5 z & =b_{1} \\
2 x-4 y+3 z & =b_{2} \\
x-2 y+2 z & =b_{3}
\end{aligned}
$$

has at least one solution. Then, which of the following system(s) (in real variables) has (have) at least one solution of each $\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right] \in S$?
[JEE(Advanced) 2018]
(A) $x+2 y+3 z=b_{1}, 4 y+5 z=b_{2}$ and $x+2 y+6 z=b_{3}$
(B) $x+y+3 z=b_{1}, 5 x+2 y+6 z=b_{2}$ and $-2 x-y-3 z=b_{3}$
(C) $-\mathrm{x}+2 \mathrm{y}-5 \mathrm{z}=\mathrm{b}_{1}, 2 \mathrm{x}-4 \mathrm{y}+10 \mathrm{z}=\mathrm{b}_{2}$ and $\mathrm{x}-2 \mathrm{y}+5 \mathrm{z}=\mathrm{b}_{3}$
(D) $\mathrm{x}+2 \mathrm{y}+5 \mathrm{z}=\mathrm{b}_{1}, 2 \mathrm{x}+3 \mathrm{z}=\mathrm{b}_{2}$ and $\mathrm{x}+4 \mathrm{y}-5 \mathrm{z}=\mathrm{b}_{3}$
14. Let P be a matrix of order 3×3 such that all the entries in P are from the set $\{-1,0,1\}$. Then, the maximum possible value of the determinant of P is \qquad .
[JEE(Advanced) 2018]
15. Which of the following is(are) NOT the square of a 3×3 matrix with real entries ?
[JEE(Advanced) 2017]
(A) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(B) $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
(C) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
(D) $\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$
16. For a real number α, if the system

$$
\left[\begin{array}{ccc}
1 & \alpha & \alpha^{2} \\
\alpha & 1 & \alpha \\
\alpha^{2} & \alpha & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

of linear equations, has infinitely many solutions, then $1+\alpha+\alpha^{2}=$
[JEE(Advanced) 2017]
17. How many 3×3 matrices M with entries from $\{0,1,2\}$ are there, for which the sum of the diagonal entries of $\mathrm{M}^{\mathrm{T}} \mathrm{M}$ is 5 ?
[JEE(Advanced) 2017]
(A) 198
(B) 126
(C) 135
(D) 162
18. Let $\mathrm{P}=\left[\begin{array}{ccc}3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0\end{array}\right]$, where $\alpha \in \mathbb{R}$, Suppose $\mathrm{Q}=\left[\mathrm{q}_{\mathrm{ij}}\right]$ is a matrix such that $\mathrm{PQ}=\mathrm{kI}$, where $\mathrm{k} \in \mathbb{R}$, $\mathrm{k} \neq 0$ and I is the identity matrix of order 3. If $\mathrm{q}_{23}=-\frac{\mathrm{k}}{8}$ and $\operatorname{det}(\mathrm{Q})=\frac{\mathrm{k}^{2}}{2}$, then- [JEE(Advanced) 2016]
(A) $\alpha=0, \mathrm{k}=8$
(B) $4 \alpha-\mathrm{k}+8=0$
(C) $\operatorname{det}(\operatorname{Padj}(\mathrm{Q}))=2^{9}$
(D) $\operatorname{det}(\operatorname{Qadj}(\mathrm{P}))=2^{13}$
19. Let $\mathrm{P}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and I be the identity matrix of order 3 . If $\mathrm{Q}=\left[\mathrm{q}_{\mathrm{i} j}\right]$ is a matrix such that $\mathrm{P}^{50}-\mathrm{Q}=\mathrm{I}$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals
[JEE(Advanced) 2016]
(A) 52
(B) 103
(C) 201
(D) 205
20. Let X and Y be two arbitrary, 3×3, non-zero, skew-symmetric matrices and Z be an arbitrary 3×3, non-zero, symmetric matrix. Then which of the following matrices is (are) skew symmetric?
[JEE(Advanced) 2015]
(A) $Y^{3} Z^{4}-Z^{4} Y^{3}$
(B) $\mathrm{X}^{44}+\mathrm{Y}^{44}$
(C) $X^{4} Z^{3}-Z^{3} X^{4}$
(D) $\mathrm{X}^{23}+\mathrm{Y}^{23}$
21. Let M be a 2×2 symmetric matrix with integer entries. Then M is invertible if [JEE(Advanced) 2014]
(A) the first column of M is the transpose of the second row of M
(B) the second row of M is the transpose of the first column of M
(C) M is a diagonal matrix with nonzero entries in the main diagonal
(D) the product of entries in the main diagonal of M is not the square of an integer
22. Let M and N be two 3×3 matrices such that $M N=N M$. Further, if $M \neq N^{2}$ and $M^{2}=N^{4}$, then
[JEE(Advanced) 2014]
(A) determinant of $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right)$ is 0
(B) there is a 3×3 non-zero matrix U such that $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) U$ is zero matrix
(C) determinant of $\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \geq 1$
(D) for a 3×3 matrix U, if $\left(M^{2}+M N^{2}\right) U$ equals the zero matrix then U is the zero matrix

SOLUTIONS

1. Ans. (B, C)

Sol. $\quad \mathrm{M}=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
$|\mathrm{M}|=-1+1=0$
$\Rightarrow \mathrm{M}$ is singular so non-invertible
Option (B) :

$$
\begin{aligned}
& M\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
-a_{1} \\
-a_{2} \\
-a_{3}
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
-a_{1} \\
-a_{2} \\
-a_{3}
\end{array}\right] \\
& \left.\begin{array}{l}
a_{1}+a_{2}+a_{3}=-a_{1} \\
a_{1}+a_{3}=-a_{2} \\
a_{2}=-a_{3}
\end{array}\right\} \Rightarrow a_{1}=0 \text { and } a_{2}+a_{3}=0
\end{aligned}
$$

infinite solutions exists $[\mathrm{B}]$ is correct.
Option (D) :
$\mathrm{M}-2 \mathrm{I}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]-2\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}-1 & 1 & 1 \\ 1 & -2 & 1 \\ 0 & 1 & -2\end{array}\right]$
$|M-2 I|=0 \Rightarrow[D]$ is wrong
Option (C) :
$M X=0 \Rightarrow\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$x+y+z=0$
$\mathrm{x}+\mathrm{z}=0$
$y=0$
\therefore Infinite solution
[C] is correct
2. Ans. (3780)

Sol. Let us calculate when $|\mathrm{R}|=0$
Case-I $\mathrm{ad}=\mathrm{bc}=0$
Now ad $=0$
\Rightarrow Total - (When none of a \& d is 0)
$=8^{2}-7^{2}=15$ ways
Similarly bc $=0 \Rightarrow 15$ ways
$\therefore 15 \times 15=225$ ways of ad $=\mathrm{bc}=0$

Case-II ad $=\mathrm{bc} \neq 0$
either $\mathrm{a}=\mathrm{d}=\mathrm{b}=\mathrm{c}$
OR $\mathrm{a} \neq \mathrm{d}, \mathrm{b} \neq \mathrm{d}$ but $\mathrm{ad}=\mathrm{bc}$
${ }^{7} \mathrm{C}_{1}=7$ ways
${ }^{7} \mathrm{C}_{2} \times 2 \times 2=84$ ways
Total 91 ways
$\therefore|R|=0$ in $225+91=316$ ways
$|\mathrm{R}| \neq 0$ in $8^{4}-316=3780$
3. Ans. (3)

Sol. $\quad A=\left(\begin{array}{ccc}\beta & 0 & 1 \\ 2 & 1 & -2 \\ 3 & 1 & -2\end{array}\right) \quad|A|=-1$
$\Rightarrow\left|A^{7}-(\beta-1) A^{6}-\beta A^{5}\right|=0$
$\Rightarrow|A|^{5}\left|A^{2}-(\beta-1) A-\beta I\right|=0$
$\Rightarrow|A|^{5}\left|\left(\mathrm{~A}^{2}-\beta \mathrm{A}\right)+\mathrm{A}-\beta \mathrm{I}\right|=0$
$\Rightarrow|A|^{5}|A(A-\beta I)+I(A-\beta I)|=0$

$$
|A|^{5}|(A+I)(A-\beta I)|=0
$$

$A+I=\left(\begin{array}{ccc}\beta+1 & 0 & 1 \\ 2 & 2 & -2 \\ 3 & 1 & -1\end{array}\right) \Rightarrow|A+I|=-4$, Here
$|\mathrm{A}| \neq 0 \&|\mathrm{~A}+\mathrm{I}| \neq 0$
$A-\beta I=\left(\begin{array}{ccc}0 & 0 & 1 \\ 2 & 1-\beta & -2 \\ 3 & 1 & -2-\beta\end{array}\right)$
$|A-\beta I|=2-3(1-\beta)=3 \beta-1=0 \Rightarrow \beta=\frac{1}{3}$
$9 \beta=3$
4. Ans. (A)

Sol. $\quad M=\left[\begin{array}{cc}\frac{5}{2} & \frac{3}{2} \\ \frac{-3}{2} & \frac{-1}{2}\end{array}\right]$
$\mathrm{M}=\left[\begin{array}{cc}\frac{3}{2}+1 & \frac{3}{2} \\ \frac{-3}{2} & \frac{-3}{2}+1\end{array}\right]$
$\mathrm{M}=\mathrm{I}+\frac{3}{2}\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$

Let $A=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\mathrm{M}^{2022}=\left(\mathrm{I}+\frac{3}{2} \mathrm{~A}\right)^{2022}$

$$
=\mathrm{I}+3033 \mathrm{~A}
$$

$$
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+3033\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
3034 & 3033 \\
-3033 & -3032
\end{array}\right]
$$

5. Ans.(A, B, D)

Sol. PEP $=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 3 & 4 \\ 8 & 13 & 18\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
8 & 13 & 18 \\
2 & 3 & 4
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 3 & 2 \\
8 & 18 & 13 \\
2 & 4 & 3
\end{array}\right) \\
& \mathrm{P}^{2}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

(B) $\left|\mathrm{EQ}+\mathrm{PFQ}^{-1}\right|=|\mathrm{EQ}|+\left|\mathrm{PFQ}^{-1}\right|$
$|\mathrm{E}|=0$ and $|\mathrm{F}|=0$ and $|\mathrm{Q}| \neq 0$
$|\mathrm{EQ}|=|\mathrm{E}||\mathrm{Q}|=0,\left|\mathrm{PFQ}^{-1}\right|=\frac{|\mathrm{P}||\mathrm{F}|}{|\mathrm{Q}|}=0$
$\mathrm{T}=\mathrm{EQ}+\mathrm{PFQ}^{-1}$
$\mathrm{TQ}=\mathrm{EQ}^{2}+\mathrm{PF}=E \mathrm{Q}^{2}+\mathrm{P}^{2} \mathrm{EP}=E \mathrm{Q}^{2}+\mathrm{EP}$
$=\mathrm{E}\left(\mathrm{Q}^{2}+\mathrm{P}\right)$
$|\mathrm{TQ}|=\left|\mathrm{E}\left(\mathrm{Q}^{2}+\mathrm{P}\right)\right| \Rightarrow|\mathrm{T}||\mathrm{Q}|$
$=|\mathrm{E}|\left|\mathrm{Q}^{2}+\mathrm{P}\right|=0 \Rightarrow|\mathrm{~T}|=0($ as $|\mathrm{Q}| \neq 0)$
(C) $\quad\left|(\mathrm{EF})^{3}\right|>|\mathrm{EF}|^{2}$

Here $0>0$ (false)
(D) as $\mathrm{P}^{2}=\mathrm{I} \Rightarrow \mathrm{P}^{-1}=\mathrm{P}$ so $\mathrm{P}^{-1} \mathrm{FP}=\mathrm{PFP}$
$=\mathrm{PPEPP}=\mathrm{E}$
so $\mathrm{E}+\mathrm{P}^{-1} \mathrm{FP}=\mathrm{E}+\mathrm{E}=2 \mathrm{E}$
$\mathrm{P}^{-1} \mathrm{EP}+\mathrm{F} \Rightarrow \mathrm{PEP}+\mathrm{F}=2 \mathrm{PEP}$
$\operatorname{Tr}(2 \mathrm{PEP})=2 \operatorname{Tr}(\mathrm{PEP})=2 \operatorname{Tr}(\mathrm{EPP})=2 \operatorname{Tr}(\mathrm{E})$
6. Ans. (A, B, C)

Sol. $|\mathrm{I}-\mathrm{EF}| \neq 0 ; \mathrm{G}=(\mathrm{I}-\mathrm{EF})^{-1} \Rightarrow \mathrm{G}^{-1}=\mathrm{I}-\mathrm{EF}$
Now, G. $\mathrm{G}^{-1}=\mathrm{I}=\mathrm{G}^{-1} \mathrm{G}$
$\Rightarrow \mathrm{G}(\mathrm{I}-\mathrm{EF})=\mathrm{I}=(\mathrm{I}-\mathrm{EF}) \mathrm{G}$
$\Rightarrow \mathrm{G}-\mathrm{GEF}=\mathrm{I}=\mathrm{G}-\mathrm{EFG}$
$\Rightarrow \mathrm{GEF}=\mathrm{EFG} \quad$ [C is Correct]
$(\mathrm{I}-\mathrm{FE})(\mathrm{I}+\mathrm{FGE})=\mathrm{I}+\mathrm{FGE}-\mathrm{FE}-\mathrm{FEFGE}$
$=\mathrm{I}+\mathrm{FGE}-\mathrm{FE}-\mathrm{F}(\mathrm{G}-\mathrm{I}) \mathrm{E}$
$=\mathrm{I}+\mathrm{FGE}-\mathrm{FE}-\mathrm{FGE}+\mathrm{FE}$ $=\mathrm{I} \quad[(\mathrm{B})$ is Correct $]$
(So 'D' is Incorrect)
We have
$(\mathrm{I}-\mathrm{FE})(\mathrm{I}+\mathrm{FGE})=\mathrm{I}$
Now
FE(+ FGE)
$=\mathrm{FE}+\mathrm{FEFGE}$
$=\mathrm{FE}+\mathrm{F}(\mathrm{G}-\mathrm{I}) \mathrm{E}$
$=\mathrm{FE}+\mathrm{FGE}-\mathrm{FE}$
$=$ FGE
$\Rightarrow|\mathrm{FE}||\mathrm{I}+\mathrm{FGE}|=|\mathrm{FGE}|$
$\Rightarrow|\mathrm{FE}| \times \frac{1}{|\mathrm{I}-\mathrm{FE}|}=|\mathrm{FGE}|($ from (1))
$\Rightarrow|\mathrm{FE}|=|\mathrm{I}-\mathrm{FE}||\mathrm{FGE}|$
(option (A) is Correct)
7. Ans. (B, C, D)

Sol. $\operatorname{det}(\mathrm{M}) \neq 0$
$\mathrm{M}^{-1}=\operatorname{adj}(\operatorname{adj} \mathrm{M})$
$\mathrm{M}^{-1}=\operatorname{det}(\mathrm{M}) \cdot \mathrm{M}$
$M^{-1} M=\operatorname{det}(M) \cdot M^{2}$
$\mathrm{I}=\operatorname{det}(\mathrm{M}) \cdot \mathrm{M}^{2}$
$\operatorname{det}(\mathrm{I})=(\operatorname{det}(\mathrm{M}))^{5}$
$1=\operatorname{det}(\mathrm{M})$
From (i) $\quad \mathrm{I}=\mathrm{M}^{2}$
$(\operatorname{adj} M)^{2}=\operatorname{adj}\left(M^{2}\right)=\operatorname{adj} I=I$
8. Ans. (5)

Sol. M-I
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \quad A^{2}=\left[\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+d c & b c+d^{2}\end{array}\right]$
$A^{3}=\left[\begin{array}{cc}a^{3}+2 a b c+b d c & a^{2} b+a b d+b^{2} c+b d^{2} \\ a^{2} c+a d c+b c^{2}+d^{2} c & a b c+2 b c d+d^{3}\end{array}\right]$
Given trace $(A)=a+d=3$
and trace $\left(A^{3}\right)=a^{3}+d^{3}+3 a b c+3 b c d=-18$
$\Rightarrow \quad \mathrm{a}^{3}+\mathrm{d}^{3}+3 \mathrm{bc}(\mathrm{a}+\mathrm{d})=-18$
$\Rightarrow \quad a^{3}+d^{3}+9 b c=-18$
$\Rightarrow \quad(a+d)\left((a+d)^{2}-3 a d\right)+9 b c=-18$
$\Rightarrow \quad 3(9-3 \mathrm{ad})+9 \mathrm{bc}=-18$
$\Rightarrow \quad \mathrm{ad}-\mathrm{bc}=5=$ determinant of A
M-II

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \quad ; \quad \Delta=\mathrm{ad}-\mathrm{bc} \\
& |\mathrm{~A}-\lambda \mathrm{I}|=(\mathrm{a}-\lambda)(\mathrm{d}-\lambda)-\mathrm{bc} \\
& =\lambda^{2}-(a+d) \lambda+a d-b c \\
& =\lambda^{2}-3 \lambda+\Delta \\
& \Rightarrow \quad \mathrm{O}=\mathrm{A}^{2}-3 \mathrm{~A}+\Delta \mathrm{I} \\
& \Rightarrow \quad A^{2}=3 \mathrm{~A}-\Delta \mathrm{I} \\
& \Rightarrow \quad \mathrm{~A}^{3}=3 \mathrm{~A}^{2}-\Delta \mathrm{A} \\
& =3(3 \mathrm{~A}-\Delta \mathrm{I})-\Delta \mathrm{A} \\
& =(9-\Delta) \mathrm{A}-3 \Delta \mathrm{I} \\
& =(9-\Delta)\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]-3 \Delta\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \therefore \quad \operatorname{trace} \mathrm{A}^{3}=(9-\Delta)(a+d)-6 \Delta \\
& \Rightarrow \quad-18=(9-\Delta)(3)-6 \Delta \\
& =27-9 \Delta \\
& \Rightarrow \quad 9 \Delta=45 \Rightarrow \Delta=5
\end{aligned}
$$

9. Ans. (B)

Sol. Given $\mathrm{M}=\alpha \mathrm{I}+\beta \mathrm{M}^{-1}$
$\Rightarrow \mathrm{M}^{2}-\alpha \mathrm{M}-\beta \mathrm{I}=\mathrm{O}$
By putting values of M and M^{2}, we get
$\alpha(\theta)=1-2 \sin ^{2} \theta \cos ^{2} \theta=1-\frac{\sin ^{2} 2 \theta}{2} \geq \frac{1}{2}$
Also, $\beta(\theta)=-\left(\sin ^{4} \theta \cos ^{4} \theta+\left(1+\cos ^{2} \theta\right)\left(1+\sin ^{2} \theta\right)\right)$
$=-\left(\sin ^{4} \theta \cos ^{4} \theta+1+\cos ^{2} \theta+\sin ^{2} \theta+\sin ^{2} \theta \cos ^{2} \theta\right)$
$=-\left(\mathrm{t}^{2}+\mathrm{t}+2\right), \mathrm{t}=\frac{\sin ^{2} 2 \theta}{4} \in\left[0, \frac{1}{4}\right]$
$\Rightarrow \beta(\theta) \geq-\frac{37}{16}$
10. Ans. (A, C, D)

Sol. $(\operatorname{adjM})_{11}=2-3 b=-1 \Rightarrow b=1$
Also, $(\operatorname{adjM})_{22}=-3 \mathrm{a}=-6 \Rightarrow \mathrm{a}=2$
Now, $\operatorname{det} \mathrm{M}=\left|\begin{array}{lll}0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1\end{array}\right|=-2$
$\Rightarrow \operatorname{det}\left(\operatorname{adjM}^{2}\right)=\left(\operatorname{det} \mathrm{M}^{2}\right)^{2}$
$=(\operatorname{detM})^{4}=16$
Also $\mathrm{M}^{-1}=\frac{\operatorname{adjM}}{\operatorname{det} \mathrm{M}}$
$\Rightarrow \operatorname{adjM}=-2 \mathrm{M}^{-1}$
$\Rightarrow(\operatorname{adj} M)^{-1}=\frac{-1}{2} M$
And, $\operatorname{adj}\left(\mathrm{M}^{-1}\right)=\left(\mathrm{M}^{-1}\right)^{-1} \operatorname{det}\left(\mathrm{M}^{-1}\right)$

$$
=\frac{1}{\operatorname{det} \mathrm{M}} \mathrm{M}=\frac{-\mathrm{M}}{2}
$$

Hence, $(\operatorname{adjM})^{-1}+\operatorname{adj}\left(\mathrm{M}^{-1}\right)=-\mathrm{M}$
Further, $\quad M X=b$
$\Rightarrow \quad \mathrm{X}=\mathrm{M}^{-1} \mathrm{~b}=\frac{-\operatorname{adjM}}{2} \mathrm{~b}$
$=\frac{-1}{2}\left[\begin{array}{ccc}-1 & 1 & -1 \\ 8 & -6 & 2 \\ -5 & 3 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
$=\frac{-1}{2}\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
$\Rightarrow(\alpha, \beta, \gamma)=(1,-1,1)$
11. Ans. (B, C, D)

Sol. Let $\mathrm{Q}=\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1\end{array}\right]$
$\mathrm{X}=\sum_{\mathrm{k}=1}^{6}\left(\mathrm{P}_{\mathrm{k}} \mathrm{QP}_{\mathrm{K}}^{\mathrm{T}}\right)$
$\mathrm{X}^{\mathrm{T}}=\sum_{\mathrm{k}=1}^{6}\left(\mathrm{P}_{\mathrm{k}} \mathrm{QP}_{\mathrm{K}}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{X}$
X is symmetric
Let $\mathrm{R}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$X R=\sum_{k=1}^{6} P_{K} Q_{K}^{T} R \cdot\left[\because P_{K}{ }^{T} R=R\right]$
$=\sum_{\mathrm{K}=1}^{6} \mathrm{P}_{\mathrm{K}} \mathrm{QR} .=\left(\sum_{\mathrm{K}=1}^{6} \mathrm{P}_{\mathrm{K}}\right) \mathrm{QR}$
$\sum_{\mathrm{K}=1}^{6} \mathrm{P}_{\mathrm{K}}=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right] \quad \mathrm{QR}=\left[\begin{array}{l}6 \\ 3 \\ 6\end{array}\right]$
$\Rightarrow \mathrm{XR}=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]\left[\begin{array}{l}6 \\ 3 \\ 6\end{array}\right]=\left[\begin{array}{l}30 \\ 30 \\ 30\end{array}\right]=30 \mathrm{R}$
$\Rightarrow \alpha=30$.
Trace $\mathrm{X}=\operatorname{Trace}\left(\sum_{\mathrm{K}=1}^{6} \mathrm{P}_{\mathrm{K}} \mathrm{QP}_{\mathrm{K}}^{\mathrm{T}}\right)$
$=\sum_{\mathrm{K}=1}^{6} \operatorname{Trace}\left(\mathrm{P}_{\mathrm{K}} \mathrm{QP}_{\mathrm{K}}^{\mathrm{T}}\right)=6(\operatorname{Trace} \mathrm{Q})=18$
$\mathrm{X}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=30\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow(\mathrm{X}-30 \mathrm{I})\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\mathrm{O} \Rightarrow|\mathrm{X}-30 \mathrm{I}|=0$
$\Rightarrow \mathrm{X}-30 \mathrm{I}$ is non-invertible
12. Ans. (C, D)

Sol. $\quad \operatorname{det}(\mathrm{R})=\operatorname{det}\left(\mathrm{PQP}^{-1}\right)=(\operatorname{det} \mathrm{P})(\operatorname{det} \mathrm{Q})\left(\frac{1}{\operatorname{det} \mathrm{P}}\right)$
$=\operatorname{det} \mathrm{Q}$
$=48-4 x^{2}$

Option (A) :

for $x=1 \operatorname{det}(R)=44 \neq 0$
\therefore for equation $\mathrm{R}\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
We will have trivial solution
$\alpha=\beta=\gamma=0$
Option (B) :
$\mathrm{PQ}=\mathrm{QP}$
$\mathrm{PQP}^{-1}=\mathrm{Q}$
$\mathrm{R}=\mathrm{Q}$
No value of x .
Option (C) :
$\operatorname{det}\left[\begin{array}{lll}2 & x & x \\ 0 & 4 & 0 \\ \mathrm{x} & \mathrm{x} & 5\end{array}\right]+8$
$=\left(40-4 x^{2}\right)+8=48-4 x^{2}=\operatorname{det} R \forall x \in R$

Option (D):

$\mathrm{R}=\left[\begin{array}{ccc}2 & 1 & 2 / 3 \\ 0 & 4 & 4 / 3 \\ 0 & 0 & 6\end{array}\right]$
$(\mathrm{R}-6 \mathrm{I})\left[\begin{array}{l}1 \\ \mathrm{a} \\ \mathrm{b}\end{array}\right]=\mathrm{O}$
$\Rightarrow-4+\mathrm{a}+\frac{2 \mathrm{~b}}{3}=0$
$-2 a+\frac{4 b}{3}=0$
$\Rightarrow \mathrm{a}=2 \quad \mathrm{~b}=3$
$\mathrm{a}+\mathrm{b}=5$

13. Ans. (A, D)

Sol. We find $\mathrm{D}=0 \&$ since no pair of planes are parallel, so there are infinite number of solutions

Let $\alpha \mathrm{P}_{1}+\lambda \mathrm{P}_{2}=\mathrm{P}_{3}$
$\Rightarrow \mathrm{P}_{1}+7 \mathrm{P}_{2}=13 \mathrm{P}_{3}$
$\Rightarrow \mathrm{b}_{1}+7 \mathrm{~b}_{2}=13 \mathrm{~b}_{3}$
(A) $\mathrm{D} \neq 0 \Rightarrow$ unique solution for any $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$
(B) $\mathrm{D}=0$ but $\mathrm{P}_{1}+7 \mathrm{P}_{2} \neq 13 \mathrm{P}_{3}$
(C) As planes are parallel and there exist
infinite ordered triplet for which they will be non coincident although satisfying $\mathrm{b}_{1}+7 \mathrm{~b}_{2}=13 \mathrm{~b}_{3}$
\therefore rejected.
(D) $\mathrm{D} \neq 0$
14. Ans. (4)

Sol. $\Delta=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$
$=\underbrace{\left(a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}\right)}_{x}-\underbrace{\left(a_{3} b_{2} c_{1}+a_{2} b_{1} c_{3}+a_{1} b_{3} c_{2}\right)}_{y}$
Now if $\mathrm{x} \leq 3$ and $\mathrm{y} \geq-3$
the Δ can be maximum 6
But it is not possible
as $x=3 \Rightarrow$ each term of $x=1$
and $y=3 \Rightarrow$ each term of $y=-1$
$\Rightarrow \prod_{\mathrm{i}=1}^{3} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}=1$ and $\prod_{\mathrm{i}=1}^{3} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}=-1$
which is contradiction
so now next possibility is 4
which is obtained as
$\left|\begin{array}{ccc}1 & 1 & 1 \\ -1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right|=1(1+1)-1(-1-1)+1(1-1)=4$
15. Ans. (A, B)
16. Ans. (1)

Sol. $\Delta=0 \Rightarrow 1\left(1-\alpha^{2}\right)-\alpha\left(\alpha-\alpha^{3}\right)+\alpha^{2}\left(\alpha^{2}-\alpha^{2}\right)=0$

$$
\begin{aligned}
& \left(1-\alpha^{2}\right)-\alpha^{2}+\alpha^{4}=0 \\
& \left(\alpha^{2}-1\right)^{2}=0 \Rightarrow \alpha= \pm 1
\end{aligned}
$$

but at $\alpha=1 \quad$ No solution so rejected at $\alpha=-1 \quad$ all three equation become $\mathrm{x}-\mathrm{y}+\mathrm{z}=1$ (coincident planes)
$\therefore \quad 1+\alpha+\alpha^{2}=1$
17. Ans. (A)

Sol. Let $\mathbf{M}=\left|\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & f \\ \mathrm{~g} & \mathrm{~h} & \mathrm{i}\end{array}\right|$
$\therefore \operatorname{tr}\left(\mathrm{M}^{\mathrm{T}} \mathrm{M}\right)=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}+\mathrm{d}^{2}+\mathrm{c}^{2}+f^{2}+\mathrm{g}^{2}+\mathrm{h}^{2}+\mathrm{i}^{2}$
$=5$, where entries are $\{0,1,2\}$
Only two cases are possible.
(I) five entries 1 and other four zero
$\therefore{ }^{9} \mathrm{C}_{5} \times 1$
(II) One entry is 2 , one entry is 1 and others are 0 .
$\therefore{ }^{9} \mathrm{C}_{2} \times 2$!
Total $=126+72=198$
18. Ans. (B, C)

Sol. $\quad \mathrm{PQ}=\mathrm{kI}$
$|\mathrm{P}| .|\mathrm{Q}|=\mathrm{k}^{3}$
$\Rightarrow|\mathrm{P}|=2 \mathrm{k} \neq 0 \Rightarrow \mathrm{P}$ is an invertible matrix
$\because P Q=k I$
$\therefore \mathrm{Q}=\mathrm{kP}^{-1} \mathrm{I}$
$\therefore \mathrm{Q}=\frac{\mathrm{adj} . \mathrm{P}}{2}$
$\because \mathrm{q}_{23}=-\frac{\mathrm{k}}{8}$
$\therefore \frac{-(3 \alpha+4)}{2}=-\frac{\mathrm{k}}{8} \Rightarrow \mathrm{k}=4$
$\therefore|\mathrm{P}|=2 \mathrm{k} \Rightarrow \mathrm{k}=10+6 \alpha$
Put value of k in (i).. we get $\alpha=-1$
$\therefore 4 \alpha-\mathrm{k}+8=0$
$\& \operatorname{det}(\mathrm{P}(\operatorname{adj} . \mathrm{Q}))=|\mathrm{P}||\operatorname{adj} . \mathrm{Q}|=2 \mathrm{k} .\left(\frac{\mathrm{k}^{2}}{2}\right)^{2}$
$=\frac{\mathrm{k}^{5}}{2}=2^{9}$
19. Ans. (B)

Sol. $\mathrm{P}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right] \Rightarrow \mathrm{P}^{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 8 & 1 & 0 \\ 16+32 & 8 & 1\end{array}\right]$ so, $\mathrm{P}^{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 12 & 1 & 0 \\ 16+32+48 & 12 & 1\end{array}\right]$
(from the symmetry)
$\mathrm{P}^{50}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 200 & 1 & 0 \\ \frac{16.50 .51}{2} & 200 & 1\end{array}\right]$
As, $\mathrm{P}^{50}-\mathrm{Q}=\mathrm{I} \Rightarrow \mathrm{q}_{31}=\frac{16.50 .51}{2}$
$\mathrm{q}_{32}=200$ and $\mathrm{q}_{21}=200$
$\therefore \frac{\mathrm{q}_{31}+\mathrm{q}_{32}}{\mathrm{q}_{21}}=\frac{16.50 .51}{2.200}+1$
$=102+1=103$
20. Ans. (C, D)

Sol. $x^{T}=-x, y^{T}=-y, z^{T}=z$
(A) Let $P=y^{3} z^{4}-z^{4} y^{3}$
$P^{T}=\left(y^{3} z^{4}\right)^{T}-\left(z^{4} y^{3}\right)^{T}$
$=-z^{4} y^{3}+y^{3} z^{4}=P \Rightarrow$ symmetric
(B) Let $\mathrm{P}=\mathrm{x}^{44}+\mathrm{y}^{44}$
$\mathrm{P}^{\mathrm{T}}=\left(\mathrm{X}^{44}\right)^{\mathrm{T}}+\left(\mathrm{y}^{44}\right)^{\mathrm{T}}=\mathrm{P} \Rightarrow$ symmetric
(C) Let $P=x^{4} z^{3}-z^{3} x^{4}$
$P^{T}=\left(z^{3}\right)^{T}\left(x^{4}\right)^{T}-\left(x^{4}\right)^{T}\left(z^{3}\right)^{T}$
$=\mathrm{z}^{3} \mathrm{x}^{4}-\mathrm{x}^{4} \mathrm{z}^{3}=-\mathrm{P} \Rightarrow$ skew symmetric
(D) Let $P=x^{23}+y^{23}$
$P^{T}=-x^{23}-y^{23}=-P \Rightarrow$ skew symmetric
21. Ans. (C, D)

Sol. Let $\mathrm{M}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{c}\end{array}\right]$
(A) Given that $\left[\begin{array}{l}\mathrm{a} \\ \mathrm{b}\end{array}\right]=\left[\begin{array}{l}\mathrm{b} \\ \mathrm{c}\end{array}\right] \Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}=\alpha$ (let)
$\Rightarrow \mathrm{M}=\left[\begin{array}{ll}\alpha & \alpha \\ \alpha & \alpha\end{array}\right] \Rightarrow|\mathrm{M}|=0 \Rightarrow$ Non-invertible
(B) Given that $[\mathrm{bc}]=[\mathrm{ab}] \Rightarrow \mathrm{a}=\mathrm{b}=\mathrm{c}=\alpha$ (let) again $|M|=0 \Rightarrow$ Non-invertible
(C) As given $M=\left[\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right] \Rightarrow|M|=\mathrm{ac} \neq 0$
$(\because \mathrm{a} \& \mathrm{c}$ are non zero $)$
$\Rightarrow \mathrm{M}$ is invertible
(D) $\mathrm{M}=\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{b} & \mathrm{c}\end{array}\right] \Rightarrow|\mathrm{M}|=\mathrm{ac}-\mathrm{b}^{2} \neq 0$
\because ac is not equal to square of an integer
$\therefore \mathrm{M}$ is invertible
22. Ans. (A, B)

Sol. (A) $\left(\mathrm{M}-\mathrm{N}^{2}\right)\left(\mathrm{M}+\mathrm{N}^{2}\right)=\mathbf{O}$...(1)
$\left(\therefore \mathrm{MN}^{2}=\mathrm{N}^{2} \mathrm{M}\right)$
$\Rightarrow\left|\mathrm{M}-\mathrm{N}^{2}\right|\left|\mathrm{M}+\mathrm{N}^{2}\right|=0$
Case I: If $\left|\mathrm{M}+\mathrm{N}^{2}\right|=0$
$\therefore\left|\mathrm{M}^{2}+\mathrm{MN}^{2}\right|=0$
Case II : If $\left|M+N^{2}\right| \neq 0 \Rightarrow M+N^{2}$ is invertible from (1)
$\left(\mathrm{M}-\mathrm{N}^{2}\right)\left(\mathrm{M}+\mathrm{N}^{2}\right)\left(\mathrm{M}+\mathrm{N}^{2}\right)^{-1}=\mathbf{O}$
$\Rightarrow \mathrm{M}-\mathrm{N}^{2}=\mathbf{O}$ which is wrong
(B) $\left(\mathrm{M}+\mathrm{N}^{2}\right)\left(\mathrm{M}-\mathrm{N}^{2}\right)=\mathbf{O}$
pre-multiply by M
$\Rightarrow\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right)\left(\mathrm{M}-\mathrm{N}^{2}\right)=\mathbf{O}$
Let $\mathrm{M}-\mathrm{N}^{2}=\mathrm{U}$
\Rightarrow from equation (2) there exist same non zero ' U '
$\left(\mathrm{M}^{2}+\mathrm{MN}^{2}\right) \mathrm{U}=\mathbf{O}$

