HYPERBOLA

1. Consider the hyperbola

$$
\frac{x^{2}}{100}-\frac{y^{2}}{64}=1
$$

with foci at S and S_{1}, where S lies on the positive x-axis. Let P be a point on the hyperbola, in the first quadrant. Let $\angle \mathrm{SPS}_{1}=\alpha$, with $\alpha<\frac{\pi}{2}$. The straight line passing through the point S and having the same slope as that of the tangent at P to the hyperbola, intersects the straight line $\mathrm{S}_{1} \mathrm{P}$ at P_{1}. Let δ be the distance of P from the straight line SP_{1}, and $\beta=\mathrm{S}_{1} \mathrm{P}$. Then the greatest integer less than or equal to $\frac{\beta \delta}{9} \sin \frac{\alpha}{2}$ is \qquad .
[JEE(Advanced) 2022]
2. Let a and b be positive real numbers such that $\mathrm{a}>1$ and $\mathrm{b}<\mathrm{a}$. Let P be a point in the first quadrant that lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. Suppose the tangent to the hyperbola at P passes through the point $(1,0)$, and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinate axes. Let Δ denote the area of the triangle formed by the tangent at P , the normal at P and the x -axis. If e denotes the eccentricity of the hyperbola, then which of the following statements is/are TRUE?
[JEE(Advanced) 2020]
(A) $1<\mathrm{e}<\sqrt{2}$
(B) $\sqrt{2}<\mathrm{e}<2$
(C) $\Delta=a^{4}$
(D) $\Delta=b^{4}$
3. Let $\mathrm{H}: \frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1$, where $\mathrm{a}>\mathrm{b}>0$, be a hyperbola in the xy -plane whose conjugate axis LM subtends an angle of 60° at one of its vertices N. Let the area of the triangle $L M N$ be $4 \sqrt{3}$.
[JEE(Advanced) 2018]

LIST-I

P. The length of the conjugate axis of H is
Q. The eccentricity of H is
R. The distance between the foci of H is
S. The length of the latus rectum of H is

LIST-II

1. 8
2. $\frac{4}{\sqrt{3}}$
3. $\frac{2}{\sqrt{3}}$
4. 4

The correct option is :
(A) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 2, \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 3$
(B) $\mathrm{P} \rightarrow 4 ; \mathrm{Q} \rightarrow 3 ; \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 2$
(C) $\mathrm{P} \rightarrow 4$; $\mathrm{Q} \rightarrow 1, \mathrm{R} \rightarrow 3 ; \mathrm{S} \rightarrow 2$
(D) $\mathrm{P} \rightarrow 3 ; \mathrm{Q} \rightarrow 4 ; \mathrm{R} \rightarrow 2 ; \mathrm{S} \rightarrow 1$
4. If $2 x-y+1=0$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{16}=1$, then which of the following CANNOT be sides of a right angled triangle?
[JEE(Advanced) 2017]
(A) $2 \mathrm{a}, 4,1$
(B) $2 \mathrm{a}, 8,1$
(C) a, 4, 1
(D) a, 4, 2

MATCHING TYPE : (Q. 5 to Q.7)

Column 1, 2 and 3 contain conics, equation of tangents to the conics and points of contact, respectively.

Column-1

(I) $x^{2}+y^{2}=a^{2}$
(i) $m y=m^{2} x+a$
(ii) $y=m x+a \sqrt{m^{2}+1}$
(iii) $y=m x+\sqrt{a^{2} m^{2}-1}$
(III) $y^{2}=4 a x$
(IV) $x^{2}-a^{2} y^{2}=a^{2}$
(iv) $y=m x+\sqrt{a^{2} m^{2}+1}$

Column-3

(P) $\left(\frac{\mathrm{a}}{\mathrm{m}^{2}}, \frac{2 \mathrm{a}}{\mathrm{m}}\right)$
(Q) $\left(\frac{-m a}{\sqrt{\mathrm{~m}^{2}+1}}, \frac{a}{\sqrt{\mathrm{~m}^{2}+1}}\right)$
(R) $\left(\frac{-\mathrm{a}^{2} \mathrm{~m}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+1}}, \frac{1}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+1}}\right)$
(S) $\left(\frac{-\mathrm{a}^{2} \mathrm{~m}}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-1}}, \frac{-1}{\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}-1}}\right)$
5. The tangent to a suitable conic (Column 1) at $\left(\sqrt{3}, \frac{1}{2}\right)$ is found to be $\sqrt{3} x+2 y=4$, then which of the following options is the only CORRECT combination?
[JEE(Advanced) 2017]
(A) (II) (iii) (R)
(B) (IV) (iv) (S)
(C) (IV) (iii) (S)
(D) (II) (iv) (R)
6. If a tangent to a suitable conic (Column 1) is found to be $y=x+8$ and its point of contact is $(8,16)$, then which of the following options is the only CORRECT combination?
[JEE(Advanced) 2017]
(A) (III) (i) (P)
(B) (III) (ii) (Q)
(C) (II) (iv) (R)
(D) (I) (ii) (Q)
7. For $\mathrm{a}=\sqrt{2}$, if a tangent is drawn to a suitable conic (Column 1) at the point of contact $(-1,1)$, then which of the following options is the only CORRECT combination for obtaining its equation?
[JEE(Advanced) 2017]
(A) (II) (ii) (Q)
(B) (III) (i) (P)
(C) (I) (i) (P)
(D) (I) (ii) (Q)
8. Consider the hyperbola $H: x^{2}-y^{2}=1$ and a circle S with center $N\left(x_{2}, 0\right)$. Suppose that H and S touch each other at a point $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ with $\mathrm{x}_{1}>1$ and $\mathrm{y}_{1}>0$. The common tangent to H and S at P intersects the x -axis at point M . If $(l, \mathrm{~m})$ is the centroid of the triangle $\triangle \mathrm{PMN}$, then the correct expression(s$)$ is(are)
[JEE(Advanced) 2015]
(A) $\frac{\mathrm{d} l}{\mathrm{dx}_{1}}=1-\frac{1}{3 \mathrm{x}_{1}^{2}}$ for $\mathrm{x}_{1}>1$
(B) $\frac{d m}{d x_{1}}=\frac{x_{1}}{3\left(\sqrt{x_{1}^{2}-1}\right)}$ for $\mathrm{x}_{1}>1$
(C) $\frac{\mathrm{d} l}{\mathrm{dx}_{1}}=1+\frac{1}{3 \mathrm{x}_{1}^{2}}$ for $\mathrm{x}_{1}>1$
(D) $\frac{\mathrm{dm}}{\mathrm{dy}_{1}}=\frac{1}{3}$ for $\mathrm{y}_{1}>0$

SOLUTIONS

1. Ans. (7)

Sol.

$\mathrm{S}_{1} \mathrm{P}-\mathrm{SP}=20$
$\beta-\frac{\delta}{\sin \frac{\alpha}{2}}=20$
$\beta^{2}+\frac{\delta^{2}}{\sin ^{2} \frac{\alpha}{2}}-400=\frac{2 \beta \delta}{\sin \frac{\alpha}{2}}$
$\frac{1}{\mathrm{SP}}=\frac{\sin \frac{\alpha}{2}}{\delta}$
$\cos \alpha=\frac{\mathrm{SP}^{2}+\beta^{2}-656}{2 \beta \frac{\delta}{\sin \frac{\alpha}{2}}}$
$=\frac{\frac{2 \beta \delta}{\sin \frac{\alpha}{2}}-256}{\frac{2 \beta S}{\sin \frac{\alpha}{2}}}=\cos \alpha$
$\frac{\lambda-128}{\lambda}=\cos \alpha$
$\lambda(1-\cos \alpha)=128$
$\frac{\beta \delta}{\sin \frac{\alpha}{2}} \cdot 2 \sin ^{2} \frac{\alpha}{2}=128$
$\frac{\beta \delta}{9} \sin \frac{\alpha}{2}=\frac{64}{9} \Rightarrow\left[\frac{\beta \delta}{9} \sin \frac{\alpha}{2}\right]=7$
where [.] denotes greatest integer function
2. Ans. (A, D)

Sol.

Since Normal at point P makes equal intercept on co-ordinate axes, therefore slope of Normal $=-1$

Hence slope of tangent $=1$
Equation of tangent
$y-0=1(x-1)$
$y=x-1$
Equation of tangent at $\left(\mathrm{x}_{1} \mathrm{y}_{1}\right)$
$\frac{x_{1}}{a^{2}}-\frac{\mathrm{yy}_{1}}{\mathrm{~b}^{2}}=1$
$x-y=1$ (equation of Tangent)
on comparing $\mathrm{x}_{1}=\mathrm{a}^{2}, \mathrm{y}_{1}=\mathrm{b}^{2}$
Also $\mathrm{a}^{2}-\mathrm{b}^{2}=1$
Now equation of normal at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(\mathrm{a}^{2}, \mathrm{~b}^{2}\right)$
$y-b^{2}=-1\left(x-a^{2}\right)$
$x+y=a^{2}+b^{2}$
point of intersection with x-axis is $\left(a^{2}+b^{2}\right)$
Now $e=\sqrt{1+\frac{b^{2}}{a^{2}}}$
$e=\sqrt{1+\frac{b^{2}}{b^{2}+1}}$
$\left[\operatorname{from}(1) \frac{b^{2}}{b^{2}+1}<1\right]$
$1<\mathrm{e}<\sqrt{2} \quad$ option (A)
$\Delta=\frac{1}{2} . \mathrm{AB} \cdot \mathrm{PQ}$
and $\Delta=\frac{1}{2}\left(\mathrm{a}^{2}+\mathrm{b}^{2}-1\right) \cdot \mathrm{b}^{2}$
$\Delta=\frac{1}{2}\left(2 \mathrm{~b}^{2}\right) \mathrm{b}^{2} \quad\left(\right.$ from (1) $\left.\quad \mathrm{a}^{2}-1=\mathrm{b}^{2}\right)$
$\Delta=\mathrm{b}^{4} \quad$ so option (D)
3. Ans. (B)

Sol.

$\tan 30^{\circ}=\frac{\mathrm{b}}{\mathrm{a}}$
$\Rightarrow \quad a=b \sqrt{3}$
Now area of $\triangle \mathrm{LMN}=\frac{1}{2} \cdot 2 \mathrm{~b} \cdot \mathrm{~b} \sqrt{3}$
$4 \sqrt{3}=\sqrt{3} b^{2}$
$\Rightarrow \quad \mathrm{b}=2 \& \mathrm{a}=2 \sqrt{3}$
$\Rightarrow \quad \mathrm{e}=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}=\frac{2}{\sqrt{3}}$
P. Length of conjugate axis $=2 \mathrm{~b}=4$

So $\mathrm{P} \rightarrow 4$
Q. \quad Eccentricity $\mathrm{e}=\frac{2}{\sqrt{3}}$

$$
\text { So } \mathrm{Q} \rightarrow 3
$$

R. Distance between foci $=2 \mathrm{ae}$

$$
=2(2 \sqrt{3})\left(\frac{2}{\sqrt{3}}\right)=8
$$

So $\mathrm{R} \rightarrow 1$
S. Length of latus rectum $=$

$$
\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{2(2)^{2}}{2 \sqrt{3}}=\frac{4}{\sqrt{3}}
$$

$$
\text { So } \mathrm{S} \rightarrow 2
$$

4. Ans. (B, C, D)

Sol. The line $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is tangent to hyperbola
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$, if $c^{2}=a^{2} m^{2}-b^{2}$
$\therefore(1)^{2}=4 a^{2}-16 \Rightarrow a^{2}=\frac{17}{4}$
$\Rightarrow \mathrm{a}=\frac{\sqrt{17}}{2}$

For option (A), sides are $\sqrt{17}, 4,1$
(\Rightarrow Right angled triangle)
For option (B), sides are $\sqrt{17}, 8,1$
(\Rightarrow Triangle is not possible)
For option (C), sides are $\frac{\sqrt{17}}{2}, 4,1$
(\Rightarrow Triangle is not possible)
For option (D), sides are $\frac{\sqrt{17}}{2}, 4,2$
(\Rightarrow Triangle exist but not right angled)
5. Ans. (D)

Sol. $\quad \mathrm{P}\left(\sqrt{3}, \frac{1}{2}\right) ;$ tangent $\sqrt{3} \mathrm{x}+2 \mathrm{y}=4$
$\Rightarrow(\sqrt{3}) x+4\left(\frac{1}{2}\right) \mathrm{y}=4$ comparing with (II)
$\Rightarrow \mathrm{a}=2 \quad \therefore \mathrm{y}=\mathrm{mx}+\sqrt{\mathrm{a}^{2} \mathrm{~m}^{2}+1} \quad$ is tangent for $\mathrm{m}=-\frac{\sqrt{3}}{2}$ i.e (ii)
\therefore point of contact for $\mathrm{a}=2, \mathrm{~m}=-\frac{\sqrt{3}}{2}$ is R
6. Ans. (A)

Sol. $\mathrm{y}=\mathrm{x}+8$ is tangent $\Rightarrow \mathrm{m}=1 ; \mathrm{P}(8,16)$
Comparing tangent with (i) of column $2, \mathrm{~m}=1$ satisfied and $\mathrm{a}=8$ obtained which matches for point of contact (P) of column 3 and (III) of column 1.
7. Ans. (D)

Sol. For $\mathrm{a}=\sqrt{2}$ and point $(-1,1)$ only I of column-1 satisfies. Hence equaiton of tangent is $-x+y=2$ or $\mathrm{y}=\mathrm{x}+2 \Rightarrow \mathrm{~m}=1$ which matches with (ii) of column-2 and also with Q of column-3

Let $f(\mathrm{x})=\mathrm{x}+\log _{\mathrm{e}} \mathrm{x}-\mathrm{x} \log _{\mathrm{e}} \mathrm{x}, \mathrm{x} \in(0, \infty)$.

8. Ans. (A, B, D)

Sol. Given $\mathrm{H}: \mathrm{x}^{2}-\mathrm{y}^{2}=1$

Now, equation of family of circle touching hyperbola at $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is
$\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}+\lambda\left(x_{1}-y_{1}-1\right)=0$
Now, its centre is $\left(x_{2}, 0\right)$

$$
\begin{array}{ll}
\therefore & 2 \mathrm{y}_{1}+\lambda \mathrm{y}_{1}=0 \quad \Rightarrow \quad \lambda=-2 \\
\therefore & \mathrm{x}_{2}=\frac{2 \mathrm{x}_{1}-\lambda \mathrm{x}_{1}}{2}=\frac{4 \mathrm{x}_{1}}{2}=2 \mathrm{x}_{1} \\
\therefore & \mathrm{P} \equiv\left(\mathrm{x}_{1}, \sqrt{\mathrm{x}_{1}^{2}-1}\right) \\
& \mathrm{N} \equiv\left(2 \mathrm{x}_{1}, 0\right) \\
\& & \mathrm{M} \equiv\left(\frac{1}{\mathrm{x}_{1}}, 0\right)
\end{array}
$$

$\therefore \quad \ell=\frac{3 \mathrm{x}_{1}+\frac{1}{\mathrm{x}_{1}}}{3}=\mathrm{x}_{1}+\frac{1}{3 \mathrm{x}_{1}}$
$\Rightarrow \quad \frac{\mathrm{d} \ell}{\mathrm{dx}_{1}}=1-\frac{1}{3 \mathrm{x}_{1}^{2}} \quad \mathrm{x}_{1}>1$
$\mathrm{m}=\frac{\sqrt{\mathrm{x}_{1}^{2}-1}}{3} \quad \Rightarrow \quad \frac{\mathrm{dm}}{\mathrm{dx}_{1}}=\frac{\mathrm{x}_{1}}{3 \sqrt{\mathrm{x}_{1}^{2}-1}}$
Also $\mathrm{m}=\frac{\mathrm{y}_{1}}{3} \quad \Rightarrow \quad \frac{\mathrm{dm}}{\mathrm{dy}_{1}}=\frac{1}{3} \quad \mathrm{y}_{1}>0$

