ALLEN®

ELLIPSE

- 1. Let T_1 and T_2 be two distinct common tangents to the ellipse $E: \frac{x^2}{6} + \frac{y^2}{3} = 1$ and the parabola $P: y^2 = 12x$. Suppose that the tangent T_1 touches P and E at the point A_1 and A_2 , respectively and the tangent T_2 touches P and E at the points A_4 and A_3 , respectively. Then which of the following statements is(are) true? [JEE(Advanced) 2023]
 - (A) The area of the quadrilateral $A_1A_2A_3A_4$ is 35 square units
 - (B) The area of the quadrilateral A₁A₂A₃A₄ is 36 square units
 - (C) The tangents T_1 and T_2 meet the x-axis at the point (-3, 0)
 - (D) The tangents T_1 and T_2 meet the x-axis at the point (-6, 0)
- 2. Consider the ellipse

$$\frac{x^2}{4} + \frac{y^2}{3} = 1$$
.

Let $H(\alpha, 0)$, $0 < \alpha < 2$, be a point. A straight line drawn through H parallel to the y-axis crosses the ellipse and its auxiliary circle at points E and F respectively, in the first quadrant. The tangent to the ellipse at the point E intersects the positive x-axis at a point G. Suppose the straight line joining F and the origin makes an angle ϕ with the positive x-axis.

List-I		List-II	
(I)	If $\phi = \frac{\pi}{4}$, then the area of the triangle FGH is	(P)	$\frac{\left(\sqrt{3}-1\right)^4}{8}$
(II)	If $\phi = \frac{\pi}{3}$, then the area of the triangle FGH is	(Q)	1
(III)	If $\phi = \frac{\pi}{6}$, then the area of the triangle FGH is	(R)	$\frac{3}{4}$
(IV)	If $\phi = \frac{\pi}{12}$, then the area of the triangle FGH is	(S)	$\frac{1}{2\sqrt{3}}$
		(T)	$\frac{3\sqrt{3}}{2}$

The correct option is:

[JEE(Advanced) 2022]

$$(A) (I) \rightarrow (R); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)$$

(B) (I)
$$\rightarrow$$
 (R); (II) \rightarrow (T); (III) \rightarrow (S); (IV) \rightarrow (P)

$$(C)$$
 $(I) \rightarrow (Q)$; $(II) \rightarrow (T)$; $(III) \rightarrow (S)$; $(IV) \rightarrow (P)$

(D) (I)
$$\rightarrow$$
 (Q); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) \rightarrow (P)

3. Let E be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. For any three distinct points P, Q and Q' on E, let M (P, Q) be the mid-point of the line segment joining P and Q, and M (P, Q') be the mid-point of the line segment joining P and Q'. Then the maximum possible value of the distance between M(P, Q) and M(P, Q'), as P, Q and Q' vary on E, is _____. [JEE(Advanced) 2021]

Let a, b and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^2 = 4\lambda x$, and suppose the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is

[JEE(Advanced) 2020]

- (A) $\frac{1}{\sqrt{2}}$
- (B) $\frac{1}{2}$
- (C) $\frac{1}{3}$
- (D) $\frac{2}{5}$
- 5. Define the collections $\{E_1, E_2, E_3,\}$ of ellipses and $\{R_1, R_2, R_3,\}$ of rectangles as follows:

$$E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$$
;

 R_1 : rectangle of largest area, with sides parallel to the axes, inscribed in E_1 ;

 E_n : ellipse $\frac{x^2}{a_n^2} + \frac{y^2}{b_n^2} = 1$ of largest area inscribed in R_{n-1} , n > 1;

 R_n : rectangle of largest area, with sides parallel to the axes, inscribed in $E_n,\, n \ge 1$.

Then which of the following options is/are correct?

[JEE(Advanced) 2019]

- (A) The eccentricities of E₁₈ and E₁₉ are NOT equal
- (B) The distance of a focus from the centre in E₉ is $\frac{\sqrt{5}}{32}$
- (C) The length of latus rectum of E₉ is $\frac{1}{6}$
- (D) $\sum_{n=1}^{N}$ (area of R_n) < 24, for each positive integer N
- Consider two straight lines, each of which is tangent to both the circle $x^2 + y^2 = \frac{1}{2}$ and the parabola $y^2 = 4x$. Let these lines intersect at the point Q. Consider the ellipse whose center is at the origin O(0, 0) and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement(s) is (are) TRUE?

 [JEE(Advanced) 2018]
 - (A) For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is 1
 - (B) For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
 - (C) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{4\sqrt{2}}(\pi 2)$
 - (D) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{16}(\pi 2)$

Paragraph for Question No. 7 and 8

Let $F_1(x_1, 0)$ and $F_2(x_2, 0)$ for $x_1 < 0$ and $x_2 > 0$, be the foci of the ellipse $\frac{x^2}{\alpha} + \frac{y^2}{\alpha} = 1$. Suppose a parabola having vertex at the origin and focus at F₂ intersects the ellipse at point M in the first quadrant and at point N in the fourth quadrant.

7. The orthocentre of the triangle F₁MN is[JEE(Advanced) 2016]

$$(A)\left(-\frac{9}{10},0\right)$$

(B)
$$\left(\frac{2}{3},0\right)$$

(B)
$$\left(\frac{2}{3}, 0\right)$$
 (C) $\left(\frac{9}{10}, 0\right)$

(D)
$$\left(\frac{2}{3}, \sqrt{6}\right)$$

8. If the tangents to the ellipse at M and N meet at R and the normal to the parabola at M meets the x-axis at Q, then the ratio of area of the triangle MQR to area of the quadrilateral MF₁NF₂ is-

[JEE(Advanced) 2016]

- Suppose that the foci of the ellipse $\frac{x^2}{9} + \frac{y^2}{5} = 1$ are $(f_1,0)$ and $(f_2,0)$ where $f_1 > 0$ and $f_2 < 0$. Let P_1 and P_2 be two parabolas with a common vertex at (0,0) and with foci at $(f_1,0)$ and $(2f_2,0)$, respectively. Let T_1 be a tangent to P_1 which passes through $(2f_2,0)$ and T_2 be a tangent to P_2 which passes through $(f_1,0)$. If m_1 is the slope of T_1 and m_2 is the slope of T_2 , then the value of $\left(\frac{1}{m_1^2} + m_2^2\right)$ is [JEE(Advanced) 2015]
- Let E₁ and E₂ be two ellipses whose centers are at the origin. The major axes of E₁ and E₂ lie along the **10.** x-axis and the y-axis, respectively. Let S be the circle $x^2 + (y - 1)^2 = 2$. The straight line x + y = 3 touches the curves S, E_1 and E_2 at P,Q and R, respectively. Suppose that $PQ = PR = \frac{2\sqrt{2}}{3}$. If e₁ and e₂ are the eccentricities of E₁ and E₂, respectively, then the correct expression(s) is(are)

[JEE(Advanced) 2015]

(A)
$$e_1^2 + e_2^2 = \frac{43}{40}$$

(A)
$$e_1^2 + e_2^2 = \frac{43}{40}$$
 (B) $e_1 e_2 = \frac{\sqrt{7}}{2\sqrt{10}}$ (C) $\left| e_1^2 - e_2^2 \right| = \frac{5}{8}$ (D) $e_1 e_2 = \frac{\sqrt{3}}{4}$

(C)
$$\left| e_1^2 - e_2^2 \right| = \frac{5}{8}$$

(D)
$$e_1 e_2 = \frac{\sqrt{3}}{4}$$

SOLUTIONS

1. Ans. (A, C)

Sol

$$y = mx + \frac{3}{m}$$

$$C^{2} = a^{2}m^{2} + b^{2}$$

$$\frac{9}{m^{2}} = 6m^{2} + 3 \qquad \Rightarrow m^{2} = 1$$

$$T_{1} \& T_{2}$$

$$y = x + 3, y = -x - 3$$

$$Cuts x-axis at (-3, 0)$$

$$A_{1}(3, 6) \qquad A_{4}(3, -6)$$

$$A_{2}(-2, 1) \qquad A_{3}(-2, -1)$$

$$A_{1}A_{4} = 12, \quad A_{2}A_{3} = 2, \quad MN = 5$$

$$Area = \frac{1}{2}(12 + 2) \times 5 = 35 \text{ sq. unit}$$

2. Ans. (C)

Sol.

Let $F(2\cos\phi, 2\sin\phi)$

& E(2cos ϕ , $\sqrt{3}$ sin ϕ)

EG:
$$\frac{x}{2}\cos\phi + \frac{y}{\sqrt{3}}\sin\phi = 1$$

$$\therefore G\left(\frac{2}{\cos\phi}, 0\right) \text{ and } \alpha = 2\cos\phi$$

$$ar(\Delta FGH) = \frac{1}{2} HG \times FH$$

$$= \frac{1}{2} \left(\frac{2}{\cos \phi} - 2 \cos \phi \right) \times 2 \sin \phi$$

 $f(\phi) = 2\tan\phi\sin^2\phi$

$$\therefore \text{ (I) } f\left(\frac{\pi}{4}\right) = 1 \quad \text{ (II) } f\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{2}$$

(III)
$$f\left(\frac{\pi}{6}\right) = \frac{1}{2\sqrt{3}}$$

(IV)
$$f\left(\frac{\pi}{12}\right) = 2\left(2 - \sqrt{3}\right) \left(\frac{\sqrt{3} - 1}{2\sqrt{2}}\right)^2$$

= $\left(4 - 2\sqrt{3}\right) \frac{\left(\sqrt{3} - 1\right)^2}{8} = \frac{\left(\sqrt{3} - 1\right)^4}{8}$

$$\therefore (I) \rightarrow (Q) \; ; (II) \rightarrow (T) \; ; (III) \rightarrow (S) \; ; (IV) \rightarrow (P)$$

3. Ans. (4)

Sol.

A and B be midpoints of segment PQ and PQ' respectively

AB = distance between M(P, Q) and

$$M(P, Q') = \frac{1}{2}.QQ'$$

Since, Q, Q' must be on E, so, maximum of QQ' = 8

$$\therefore \text{ Maximum of AB} = \frac{8}{2} = 4$$

4. Ans. (A)

Sol.
$$y^2 = 4\lambda x$$
, $P(\lambda, 2\lambda)$

Slope of the tangent to the parabola at point P

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{4\lambda}{2y} = \frac{4\lambda}{2x2\lambda} = 1$$

Slope of the tangent to the ellipse at P

$$\frac{2x}{a^2} + \frac{2yy'}{b^2} = 0$$

As tangents are perpendicular y' = -1

$$\Rightarrow \frac{2\lambda}{a^2} - \frac{4\lambda}{b^2} = 0 \Rightarrow \frac{a^2}{b^2} = \frac{1}{2}$$

$$\Rightarrow e = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$$

5. Ans. (C, D)

Sol.

Area of $R_1 = 3\sin 2\theta$; for this to be maximum

$$\Rightarrow \theta = \frac{\pi}{4} \Rightarrow \left(\frac{3}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$$

Hence for subsequent areas of rectangles R_n to be maximum the coordinates will be in GP with common ratio

$$r = \frac{1}{\sqrt{2}} \implies a_n = \frac{3}{\left(\sqrt{2}\right)^{n-1}} \; ; \; b_n = \frac{3}{\left(\sqrt{2}\right)^{n-1}}$$

Eccentricity of all the ellipses will be same

Distance of a focus from the centre in $E_9 = a_9e_9$

$$=\sqrt{a_9^2-b_9^2}=\frac{\sqrt{5}}{16}$$

Length of latus rectum of $E_9 = \frac{2b_9^2}{a_9} = \frac{1}{6}$

$$\therefore \sum_{n=1}^{\infty} \text{Area of R}_n = 12 + \frac{12}{2} + \frac{12}{4} + \dots = 24$$

$$\Rightarrow \sum_{n=1}^{N} (area of R_n) < 24$$
,

for each positive integer N

6. Ans. (A, C)

Sol.

Let equation of common tangent is

$$y = mx + \frac{1}{m}$$

$$\therefore \left| \frac{0+0+\frac{1}{m}}{\sqrt{1+m^2}} \right| = \frac{1}{\sqrt{2}}$$

$$\Rightarrow$$
 m⁴ + m² - 2 = 0 \Rightarrow m = ±1

Equation of common tangents are y = x + 1 and y = -x - 1

point Q is (-1, 0)

$$\therefore$$
 Equation of ellipse is $\frac{x^2}{1} + \frac{y^2}{1/2} = 1$

(A)
$$e = \sqrt{1 - \frac{1}{2}} = \frac{1}{\sqrt{2}}$$
 and $LR = \frac{2b^2}{a} = 1$

Area =
$$2.\int_{1/\sqrt{2}}^{1} \frac{1}{\sqrt{2}}.\sqrt{1-x^2} dx$$

$$= \sqrt{2} \left[\frac{x}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x \right]_{1/\sqrt{2}}^{1}$$

$$= \sqrt{2} \left[\frac{\pi}{4} - \left(\frac{1}{4} + \frac{\pi}{8} \right) \right] = \sqrt{2} \left(\frac{\pi}{8} - \frac{1}{4} \right) = \frac{\pi - 2}{4\sqrt{2}}$$

7. Ans. (A)

Orthocentre lies on x-axis

Equation of altitude through M:

$$y - \sqrt{6} = \frac{5}{2\sqrt{6}} \left(x - \frac{3}{2} \right)$$

Equation of altitude through $F_1 : y = 0$

solving, we get orthocentre $\left(-\frac{9}{10},0\right)$

8. Ans. (C)

Sol.

Normal to parabola at M:

$$y - \sqrt{6} = -\frac{\sqrt{6}}{2.1} \left(x - \frac{3}{2} \right)$$

Solving it with y = 0, we get $Q = \left(\frac{7}{2}, 0\right)$

Tangent to ellipse at M: $\frac{x \cdot \frac{3}{2}}{9} + \frac{y(\sqrt{6})}{8} = 1$

Solving it with y = 0, we get $R \equiv (6, 0)$

:. Area of triangle MQR

$$=\frac{1}{2}.\left(6-\frac{7}{2}\right).\sqrt{6}=\frac{5\sqrt{6}}{4}$$

Area of quadrilateral MF₁NF₂

$$=2.\frac{1}{2}.(1-(-1)).\sqrt{6}=2\sqrt{6}$$

Required ratio = 5:8

9. Ans. (4)

$$\therefore P_1 \text{ is } y^2 = 8x$$

$$P_2 \text{ is } y^2 = -16x$$

Let equation of tangent at (2t², 4t)

$$\therefore y = m_1 x + \frac{2}{m_1}$$

If passes through (-4,0)

$$\therefore -4m_1 + \frac{2}{m_1} = 0$$

$$\therefore m_1^2 = \frac{1}{2}$$

equation of tangent to P₂

$$y = m_2 x + \frac{\left(-4\right)}{m_2}$$

It passes through (2, 0), $2m_2 - \frac{4}{m_2} = 0$

$$\Rightarrow$$
 m₂² = 2

$$\therefore \frac{1}{m_1^2} + m_2^2 = 4$$

10. Ans. (A, B)

Sol. Let
$$E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 $(a > b)$

&
$$E_2: \frac{x^2}{c^2} + \frac{y^2}{d^2} = 1$$
 (c < d)

&
$$S: x^2 + (y-1)^2 = 2$$

& tangent to
$$E_1$$
, E_2 & S is $x + y = 3$

Now, point of contact of S & tangent is (x_1, y_1)

Let
$$x = X \& y - 1 = Y$$

$$\therefore X^2 + Y^2 = 2$$

&
$$X + Y = 2$$

Let (X_1, Y_1) be point of contact.

$$\therefore XX_1 + YY_1 = 2$$

$$X_1 = 1 & Y_1 = 1$$

$$\therefore$$
 $x_1 = 1 \& y_1 = 2$

Now, parametric equation of x + y = 3

is
$$\frac{x-1}{-\frac{1}{\sqrt{2}}} = \frac{y-2}{\frac{1}{\sqrt{2}}} = \pm \frac{2\sqrt{2}}{3} \implies x = \frac{5}{3}, y = \frac{4}{3}$$

$$\Rightarrow x = \frac{1}{3} & y = \frac{8}{3}$$

:.
$$P = (1, 2), Q = \left(\frac{5}{3}, \frac{4}{3}\right) & R = \left(\frac{1}{3}, \frac{8}{3}\right)$$

Now, equation tangent at Q on ellipse E₁

$$\frac{x.5}{3a^2} + \frac{y.4}{3b^2} = 1$$
 Comparing it with $x + y = 3$

$$a^2 = 5 \& b^2 = 4 \text{ Now}, e_1^2 = 1 - \frac{4}{5} = \frac{1}{5}$$

Similarly,
$$e_2^2 = \frac{7}{8}$$

$$\therefore \qquad e_1^2 e_2^2 = \frac{7}{40} \quad \Longrightarrow \qquad e_1 e_2 = \frac{\sqrt{7}}{2\sqrt{10}}$$

$$e_1^2 + e_2^2 = \frac{1}{5} + \frac{7}{8} = \frac{43}{40}$$
; $|e_1^2 - e_2^2| = \left| \frac{1}{5} - \frac{7}{8} \right| = \frac{27}{40}$