ELLIPSE

1. Let T_{1} and T_{2} be two distinct common tangents to the ellipse $E: \frac{x^{2}}{6}+\frac{y^{2}}{3}=1$ and the parabola $P: y^{2}=12 x$. Suppose that the tangent T_{1} touches P and E at the point A_{1} and A_{2}, respectively and the tangent T_{2} touches P and E at the points A_{4} and A_{3}, respectively. Then which of the following statements is(are) true?
[JEE(Advanced) 2023]
(A) The area of the quadrilateral $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$ is 35 square units
(B) The area of the quadrilateral $\mathrm{A}_{1} \mathrm{~A}_{2} \mathrm{~A}_{3} \mathrm{~A}_{4}$ is 36 square units
(C) The tangents T_{1} and T_{2} meet the x-axis at the point $(-3,0)$
(D) The tangents T_{1} and T_{2} meet the x-axis at the point $(-6,0)$
2. Consider the ellipse

$$
\frac{x^{2}}{4}+\frac{y^{2}}{3}=1
$$

Let $\mathrm{H}(\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through H parallel to the y -axis crosses the ellipse and its auxiliary circle at points E and F respectively, in the first quadrant. The tangent to the ellipse at the point E intersects the positive x-axis at a point G. Suppose the straight line joining F and the origin makes an angle ϕ with the positive x-axis.

List-I	List-II		
(I)	If $\phi=\frac{\pi}{4}$, then the area of the triangle FGH is	(P)	$\frac{(\sqrt{3}-1)^{4}}{8}$
(II)	If $\phi=\frac{\pi}{3}$, then the area of the triangle FGH is	(Q)	1
(III)	If $\phi=\frac{\pi}{6}$, then the area of the triangle FGH is	(R)	$\frac{3}{4}$
(IV)	If $\phi=\frac{\pi}{12}$, then the area of the triangle FGH is	(S)	$\frac{1}{2 \sqrt{3}}$
		(T)	$\frac{3 \sqrt{3}}{2}$

The correct option is:
[JEE(Advanced) 2022]
(A) (I) \rightarrow (R); (II) \rightarrow (S); (III) \rightarrow (Q); (IV) $\rightarrow(\mathrm{P})$
(B) (I) $\rightarrow(\mathrm{R}) ;(\mathrm{II}) \rightarrow(\mathrm{T}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$
(C) (I) \rightarrow (Q); (II) \rightarrow (T); (III) \rightarrow (S); (IV) $\rightarrow(\mathrm{P})$
(D) (I) \rightarrow (Q); (II) \rightarrow (S); (III) $\rightarrow(\mathrm{Q}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$
3. Let E be the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. For any three distinct points P, Q and Q^{\prime} on E, let $M(P, Q)$ be the mid-point of the line segment joining P and Q, and $M\left(P, Q^{\prime}\right)$ be the mid-point of the line segment joining P and Q^{\prime}. Then the maximum possible value of the distance between $M(P, Q)$ and $M\left(P, Q^{\prime}\right)$, as P, Q and Q^{\prime} vary on E , is \qquad .
[JEE(Advanced) 2021]
4. Let a, b and λ be positive real numbers. Suppose P is an end point of the latus rectum of the parabola $y^{2}=4 \lambda x$, and suppose the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through the point P. If the tangents to the parabola and the ellipse at the point P are perpendicular to each other, then the eccentricity of the ellipse is
[JEE(Advanced) 2020]
(A) $\frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}$
(C) $\frac{1}{3}$
(D) $\frac{2}{5}$
5. Define the collections $\left\{\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}, \ldots ..\right\}$ of ellipses and $\left\{\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \ldots \ldots\right\}$ of rectangles as follows :
$E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1 ;$
R_{1} : rectangle of largest area, with sides parallel to the axes, inscribed in E_{1};
E_{n} : ellipse $\frac{x^{2}}{a_{n}^{2}}+\frac{y^{2}}{b_{n}^{2}}=1$ of largest area inscribed in $R_{n-1}, n>1$;
R_{n} : rectangle of largest area, with sides parallel to the axes, inscribed in $E_{n}, n>1$.
Then which of the following options is/are correct ?
[JEE(Advanced) 2019]
(A) The eccentricities of E_{18} and E_{19} are NOT equal
(B) The distance of a focus from the centre in E_{9} is $\frac{\sqrt{5}}{32}$
(C) The length of latus rectum of E_{9} is $\frac{1}{6}$
(D) $\sum_{n=1}^{N}\left(\right.$ area of $\left.R_{n}\right)<24$, for each positive integer N
6. Consider two straight lines, each of which is tangent to both the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\frac{1}{2}$ and the parabola $y^{2}=4 x$. Let these lines intersect at the point Q. Consider the ellipse whose center is at the origin $\mathrm{O}(0,0)$ and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement(s) is (are) TRUE ?
[JEE(Advanced) 2018]
(A) For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is 1
(B) For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$
(C) The area of the region bounded by the ellipse between the lines $x=\frac{1}{\sqrt{2}}$ and $x=1$ is $\frac{1}{4 \sqrt{2}}(\pi-2)$
(D) The area of the region bounded by the ellipse between the lines $\mathrm{x}=\frac{1}{\sqrt{2}}$ and $\mathrm{x}=1$ is $\frac{1}{16}(\pi-2)$

Paragraph for Question No. 7 and 8

Let $\mathrm{F}_{1}\left(\mathrm{x}_{1}, 0\right)$ and $\mathrm{F}_{2}\left(\mathrm{x}_{2}, 0\right)$ for $\mathrm{x}_{1}<0$ and $\mathrm{x}_{2}>0$, be the foci of the ellipse $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{8}=1$. Suppose a parabola having vertex at the origin and focus at F_{2} intersects the ellipse at point M in the first quadrant and at point N in the fourth quadrant.
7. The orthocentre of the triangle $\mathrm{F}_{1} \mathrm{MN}$ is-
[JEE(Advanced) 2016]
(A) $\left(-\frac{9}{10}, 0\right)$
(B) $\left(\frac{2}{3}, 0\right)$
(C) $\left(\frac{9}{10}, 0\right)$
(D) $\left(\frac{2}{3}, \sqrt{6}\right)$
8. If the tangents to the ellipse at M and N meet at R and the normal to the parabola at M meets the x-axis at Q , then the ratio of area of the triangle MQR to area of the quadrilateral $\mathrm{MF}_{1} \mathrm{NF}_{2}$ is-
[JEE(Advanced) 2016]
(A) $3: 4$
(B) $4: 5$
(C) $5: 8$
(D) $2: 3$
9. Suppose that the foci of the ellipse $\frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{5}=1$ are $\left(f_{1}, 0\right)$ and $\left(f_{2}, 0\right)$ where $f_{1}>0$ and $f_{2}<0$. Let P_{1} and P_{2} be two parabolas with a common vertex at $(0,0)$ and with foci at $\left(f_{1}, 0\right)$ and $\left(2 f_{2}, 0\right)$, respectively. Let T_{1} be a tangent to P_{1} which passes through $\left(2 f_{2}, 0\right)$ and T_{2} be a tangent to P_{2} which passes through $\left(f_{1}, 0\right)$. If m_{1} is the slope of T_{1} and m_{2} is the slope of T_{2}, then the value of $\left(\frac{1}{m_{1}^{2}}+m_{2}^{2}\right)$ is
[JEE(Advanced) 2015]
10. Let E_{1} and E_{2} be two ellipses whose centers are at the origin. The major axes of E_{1} and E_{2} lie along the x-axis and the y-axis, respectively. Let S be the circle $x^{2}+(y-1)^{2}=2$. The straight line $x+y=3$ touches the curves S, E_{1} and E_{2} at P, Q and R, respectively. Suppose that $P Q=P R=\frac{2 \sqrt{2}}{3}$. If e_{1} and e_{2} are the eccentricities of E_{1} and E_{2}, respectively, then the correct expression(s) is(are)
[JEE(Advanced) 2015]
(A) $\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=\frac{43}{40}$
(B) $\mathrm{e}_{1} \mathrm{e}_{2}=\frac{\sqrt{7}}{2 \sqrt{10}}$
(C) $\left|\mathrm{e}_{1}^{2}-\mathrm{e}_{2}^{2}\right|=\frac{5}{8}$
(D) $\mathrm{e}_{1} \mathrm{e}_{2}=\frac{\sqrt{3}}{4}$

SOLUTIONS

1. Ans. (A, C)

Sol

$y=m x+\frac{3}{m}$
$C^{2}=a^{2} m^{2}+b^{2}$
$\frac{9}{\mathrm{~m}^{2}}=6 \mathrm{~m}^{2}+3$
$\Rightarrow \mathrm{m}^{2}=1$
$\mathrm{T}_{1} \& \mathrm{~T}_{2}$
$y=x+3, y=-x-3$
Cuts x -axis at $(-3,0)$
$\mathrm{A}_{1}(3,6)$
$\mathrm{A}_{4}(3,-6)$
$\mathrm{A}_{2}(-2,1)$
$\mathrm{A}_{3}(-2,-1)$
$\mathrm{A}_{1} \mathrm{~A}_{4}=12, \quad \mathrm{~A}_{2} \mathrm{~A}_{3}=2, \quad \mathrm{MN}=5$
Area $=\frac{1}{2}(12+2) \times 5=35$ sq.unit
2. Ans. (C)

Sol.

Let $\mathrm{F}(2 \cos \phi, 2 \sin \phi)$
\& $\mathrm{E}(2 \cos \phi, \sqrt{3} \sin \phi)$
EG : $\frac{\mathrm{x}}{2} \cos \phi+\frac{\mathrm{y}}{\sqrt{3}} \sin \phi=1$
$\therefore \mathrm{G}\left(\frac{2}{\cos \phi}, 0\right)$ and $\alpha=2 \cos \phi$
$\operatorname{ar}(\Delta \mathrm{FGH})=\frac{1}{2} \mathrm{HG} \times \mathrm{FH}$
$=\frac{1}{2}\left(\frac{2}{\cos \phi}-2 \cos \phi\right) \times 2 \sin \phi$
$\mathrm{f}(\phi)=2 \tan \phi \sin ^{2} \phi$
\therefore (I) f($\left.\frac{\pi}{4}\right)=1 \quad$ (II) f($\left.\frac{\pi}{3}\right)=\frac{3 \sqrt{3}}{2}$
(III) $\mathrm{f}\left(\frac{\pi}{6}\right)=\frac{1}{2 \sqrt{3}}$
(IV) $f\left(\frac{\pi}{12}\right)=2(2-\sqrt{3})\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2}$
$=(4-2 \sqrt{3}) \frac{(\sqrt{3}-1)^{2}}{8}=\frac{(\sqrt{3}-1)^{4}}{8}$
\therefore (I) \rightarrow (Q) ; (II) \rightarrow (T) ; (III) \rightarrow (S) ; (IV) \rightarrow (P)
3. Ans. (4)

Sol.

A and B be midpoints of segment $P Q$ and $P Q^{\prime}$ respectively
$\mathrm{AB}=$ distance between $\mathrm{M}(\mathrm{P}, \mathrm{Q})$ and
$\mathrm{M}\left(\mathrm{P}, \mathrm{Q}^{\prime}\right)=\frac{1}{2} . \mathrm{QQ}^{\prime}$
Since, Q, Q ' must be on E , so,
maximum of $\mathrm{QQ}^{\prime}=8$
\therefore Maximum of $\mathrm{AB}=\frac{8}{2}=4$
4. Ans. (A)

Sol. $y^{2}=4 \lambda x, P(\lambda, 2 \lambda)$
Slope of the tangent to the parabola at point P
$\frac{d y}{d x}=\frac{4 \lambda}{2 y}=\frac{4 \lambda}{2 \mathrm{x} 2 \lambda}=1$
Slope of the tangent to the ellipse at P
$\frac{2 \mathrm{x}}{\mathrm{a}^{2}}+\frac{2 \mathrm{yy}^{\prime}}{\mathrm{b}^{2}}=0$
As tangents are perpendicular $\mathrm{y}^{\prime}=-1$
$\Rightarrow \frac{2 \lambda}{\mathrm{a}^{2}}-\frac{4 \lambda}{\mathrm{~b}^{2}}=0 \Rightarrow \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}=\frac{1}{2}$
$\Rightarrow \mathrm{e}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$
5. Ans. (C, D)

Sol.

Area of $\mathrm{R}_{1}=3 \sin 2 \theta$; for this to be maximum
$\Rightarrow \theta=\frac{\pi}{4} \Rightarrow\left(\frac{3}{\sqrt{2}}, \frac{2}{\sqrt{2}}\right)$
Hence for subsequent areas of rectangles R_{n} to be maximum the coordinates will be in GP with common ratio
$r=\frac{1}{\sqrt{2}} \Rightarrow a_{n}=\frac{3}{(\sqrt{2})^{n-1}} ; \quad b_{n}=\frac{3}{(\sqrt{2})^{n-1}}$
Eccentricity of all the ellipses will be same Distance of a focus from the centre in $\mathrm{E}_{9}=\mathrm{a}_{9} \mathrm{e}_{9}$
$=\sqrt{\mathrm{a}_{9}^{2}-\mathrm{b}_{9}^{2}}=\frac{\sqrt{5}}{16}$
Length of latus rectum of $\mathrm{E}_{9}=\frac{2 \mathrm{~b}_{9}^{2}}{\mathrm{a}_{9}}=\frac{1}{6}$
$\because \sum_{\mathrm{n}=1}^{\infty}$ Area of $\mathrm{R}_{\mathrm{n}}=12+\frac{12}{2}+\frac{12}{4}+\ldots \ldots \infty=24$
$\Rightarrow \sum_{n=1}^{N}\left(\right.$ area of $\left.R_{n}\right)<24$,
for each positive integer N
6. Ans. (A, C)

Sol.

Let equation of common tangent is
$\mathrm{y}=\mathrm{mx}+\frac{1}{\mathrm{~m}}$
$\therefore\left|\frac{0+0+\frac{1}{\mathrm{~m}}}{\sqrt{1+\mathrm{m}^{2}}}\right|=\frac{1}{\sqrt{2}}$
$\Rightarrow \mathrm{m}^{4}+\mathrm{m}^{2}-2=0 \Rightarrow \mathrm{~m}= \pm 1$
Equation of common tangents are $y=x+1$ and $y=-x-1$
point Q is $(-1,0)$
\therefore Equation of ellipse is $\frac{\mathrm{x}^{2}}{1}+\frac{\mathrm{y}^{2}}{1 / 2}=1$
(A) $\mathrm{e}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$ and $L R=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=1$
(C)

Area $=2 \cdot \int_{1 / \sqrt{2}}^{1} \frac{1}{\sqrt{2}} \cdot \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}$
$=\sqrt{2}\left[\frac{\mathrm{x}}{2} \sqrt{1-\mathrm{x}^{2}}+\frac{1}{2} \sin ^{-1} \mathrm{x}\right]_{1 / \sqrt{2}}^{1}$
$=\sqrt{2}\left[\frac{\pi}{4}-\left(\frac{1}{4}+\frac{\pi}{8}\right)\right]=\sqrt{2}\left(\frac{\pi}{8}-\frac{1}{4}\right)=\frac{\pi-2}{4 \sqrt{2}}$
7. Ans. (A)

Sol.

Orthocentre lies on x -axis
Equation of altitude through M :
$y-\sqrt{6}=\frac{5}{2 \sqrt{6}}\left(x-\frac{3}{2}\right)$
Equation of altitude through $\mathrm{F}_{1}: \mathrm{y}=0$
solving, we get orthocentre $\left(-\frac{9}{10}, 0\right)$
8. Ans. (C)

Sol.

Normal to parabola at M :
$y-\sqrt{6}=-\frac{\sqrt{6}}{2.1}\left(x-\frac{3}{2}\right)$
Solving it with $\mathrm{y}=0$, we get $\mathrm{Q} \equiv\left(\frac{7}{2}, 0\right)$
Tangent to ellipse at $\mathrm{M}: \frac{\mathrm{x} \cdot \frac{3}{2}}{9}+\frac{\mathrm{y}(\sqrt{6})}{8}=1$
Solving it with $y=0$, we get $R \equiv(6,0)$
$\therefore \quad$ Area of triangle MQR
$=\frac{1}{2} \cdot\left(6-\frac{7}{2}\right) \cdot \sqrt{6}=\frac{5 \sqrt{6}}{4}$
Area of quadrilateral $\mathrm{MF}_{1} \mathrm{NF}_{2}$
$=2 \cdot \frac{1}{2} \cdot(1-(-1)) \cdot \sqrt{6}=2 \sqrt{6}$
Required ratio $=5: 8$
9. Ans. (4)

Sol.

$\therefore \mathrm{P}_{1}$ is $\mathrm{y}^{2}=8 \mathrm{x}$
P_{2} is $y^{2}=-16 x$
Let equation of tangent at $\left(2 \mathrm{t}^{2}, 4 \mathrm{t}\right)$
$\therefore \mathrm{y}=\mathrm{m}_{1} \mathrm{x}+\frac{2}{\mathrm{~m}_{1}}$
If passes through $(-4,0)$
$\therefore-4 m_{1}+\frac{2}{m_{1}}=0$
$\therefore \mathrm{m}_{1}^{2}=\frac{1}{2}$
equation of tangent to P_{2}

$$
\mathrm{y}=\mathrm{m}_{2} \mathrm{x}+\frac{(-4)}{\mathrm{m}_{2}}
$$

It passes through $(2,0), 2 \mathrm{~m}_{2}-\frac{4}{\mathrm{~m}_{2}}=0$
$\Rightarrow \mathrm{m}_{2}^{2}=2$
$\therefore \frac{1}{\mathrm{~m}_{1}^{2}}+\mathrm{m}_{2}^{2}=4$
10. Ans. (A, B)

Sol. Let $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad(a>b)$
$\& \quad E_{2}: \frac{x^{2}}{c^{2}}+\frac{y^{2}}{d^{2}}=1 \quad(c<d)$
\& $\quad S: x^{2}+(y-1)^{2}=2$
\& tangent to $E_{1}, E_{2} \& S$ is $x+y=3$
Now, point of contact of $S \&$ tangent is $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
Let $x=X \quad \& y-1=Y$
$\therefore \quad \mathrm{X}^{2}+\mathrm{Y}^{2}=2$
\& $\quad X+Y=2$
Let $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ be point of contact.
$\therefore \quad \mathrm{XX}_{1}+\mathrm{YY}_{1}=2$
$\therefore \quad \mathrm{X}_{1}=1 \& \mathrm{Y}_{1}=1$
$\therefore \quad \mathrm{x}_{1}=1 \& \mathrm{y}_{1}=2$
Now, parametric equation of $x+y=3$
is $\frac{x-1}{-\frac{1}{\sqrt{2}}}=\frac{y-2}{\frac{1}{\sqrt{2}}}= \pm \frac{2 \sqrt{2}}{3} \Rightarrow x=\frac{5}{3}, y=\frac{4}{3}$
$\Rightarrow \quad x=\frac{1}{3} \& y=\frac{8}{3}$
$\therefore \quad \mathrm{P} \equiv(1,2), \mathrm{Q} \equiv\left(\frac{5}{3}, \frac{4}{3}\right) \& \mathrm{R} \equiv\left(\frac{1}{3}, \frac{8}{3}\right)$
Now, equation tangent at Q on ellipse E_{1}
$\frac{x .5}{3 a^{2}}+\frac{y .4}{3 b^{2}}=1$ Comparing it with $x+y=3$
$\therefore \quad \mathrm{a}^{2}=5 \& \mathrm{~b}^{2}=4$ Now, $\mathrm{e}_{1}^{2}=1-\frac{4}{5}=\frac{1}{5}$
Similarly, $e_{2}^{2}=\frac{7}{8}$
$\therefore \quad \mathrm{e}_{1}^{2} \mathrm{e}_{2}^{2}=\frac{7}{40} \quad \Rightarrow \quad \mathrm{e}_{1} \mathrm{e}_{2}=\frac{\sqrt{7}}{2 \sqrt{10}}$
$\mathrm{e}_{1}^{2}+\mathrm{e}_{2}^{2}=\frac{1}{5}+\frac{7}{8}=\frac{43}{40} ;\left|\mathrm{e}_{1}^{2}-\mathrm{e}_{2}^{2}\right|=\left|\frac{1}{5}-\frac{7}{8}\right|=\frac{27}{40}$

