DIFFERENTIABILITY

- Let the function f: R → R be defined by f(x) = x³ x² + (x 1) sin x and let g: R → R be an arbitrary function. Let fg: R → R be the product function defined by (fg) (x) = f(x) g(x). Then which of the following statements is/are TRUE ? [JEE(Advanced) 2020]
 (A) If g is continuous at x = 1, then fg is differentiable at x = 1
 (B) If fg is differentiable at x = 1, then g is continuous at x = 1
 (C) If g is differentiable at x = 1, then fg is differentiable at x = 1
 (D) If fg is differentiable at x = 1, then g is differentiable at x = 1
- **2.** Let the functions $f: (-1, 1) \rightarrow \mathbb{R}$ and $g: (-1, 1) \rightarrow (-1, 1)$ be defined by

 $f(\mathbf{x}) = |2\mathbf{x} - 1| + |2\mathbf{x} + 1|$ and $g(\mathbf{x}) = \mathbf{x} - [\mathbf{x}]$,

ALLEN®

where [x] denotes the greatest integer less than or equal to x. Let $fog:(-1, 1) \rightarrow \mathbb{R}$ be the composite function defined by (fog)(x) = f(g(x)). Suppose c is the number of points in the interval (-1, 1) at which fog is **NOT** continuous, and suppose d is the number of points in the interval (-1, 1) at which fog is **NOT** differentiable. Then the value of c + d is _____. [JEE(Advanced) 2020]

3. Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ be functions satisfying f(x + y) = f(x) + f(y) + f(x)f(y) and f(x) = xg(x)

for all x, $y \in \mathbb{R}$. If $\lim_{x \to \infty} g(x) = 1$, then which of the following statements is/are TRUE?

[JEE(Advanced) 2020]

- (A) *f* is differentiable at every $x \in \mathbb{R}$
- (B) If g(0) = 1, then g is differentiable at every $x \in \mathbb{R}$
- (C) The derivative f'(1) is equal to 1
- (D) The derivative f'(0) is equal to 1
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 1 and satisfying the equation

f(x + y) = f(x)f'(y) + f'(x)f(y) for all $x, y \in \mathbb{R}$.

Then, then value of $\log_e(f(4))$ is _____

[JEE(Advanced) 2018]

5. Let $f_1 : \mathbb{R} \to \mathbb{R}$, $f_2 : \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}$, $f_3 : \left(-1, e^{\frac{\pi}{2}} - 2\right) \to \mathbb{R}$ and $f_4 : \mathbb{R} \to \mathbb{R}$ be functions defined by

(i) $f_1(x) = \sin\left(\sqrt{1 - e^{-x^2}}\right)$ (ii) $f_2(x) = \begin{cases} \frac{|\sin x|}{\tan^{-1} x} & \text{if } x \neq 0\\ 1 & \text{if } x = 0 \end{cases}$, where the inverse trigonometric function $\tan^{-1}x$ assumes values in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

(iii) $f_3(x) = [sin(log_e(x + 2)]]$, where for $t \in \mathbb{R}$, [t] denotes the greatest integer less than or equal to t,

(iv) $f_4(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$

[JEE(Advanced) 2018]

List-I	List-II
P. The function f_1 is	1. NOT continuous at $x = 0$
Q. The function f_2 is	2. continuous at $x = 0$ and NOT
	differentiable at $x = 0$
R. The function f_3 is	3. differentiable at $x = 0$ and its derivative is NOT
	continuous at $x = 0$
S. The function f_4 is	4. differentiable at $x = 0$ and its derivative is
	continuous at $x = 0$
The correct option is :	
(A) $P \rightarrow 2$; $Q \rightarrow 3$, $R \rightarrow 1$; $S \rightarrow 4$	
(B) $P \rightarrow 4$; $Q \rightarrow 1$; $R \rightarrow 2$; $S \rightarrow 3$	
(C) $P \rightarrow 4$; $Q \rightarrow 2$, $R \rightarrow 1$; $S \rightarrow 3$	
(D) $P \rightarrow 2$; $Q \rightarrow 1$; $R \rightarrow 4$; $S \rightarrow 3$	
Let $a, b \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be defined by f	$f(x) = acos(x^3 - x) + b x sin(x^3 + x)$. Then f is -
	[JEE(Advanced) 2016]
(A) differentiable at $x = 0$ if $a = 0$ and $b = 1$	
(B) differentiable at $x = 1$ if $a = 1$ and $b = 0$	
(C) NOT differentiable at $x = 0$ if $a = 1$ and	$\mathbf{b} = 0$
(D) NOT differentiable at $x = 1$ if $a = 1$ and	b = 1
Let $f:\left[-\frac{1}{2},2\right] \to \mathbb{R}$ and $g:\left[-\frac{1}{2},2\right] \to \mathbb{R}$ by	be function defined by $f(x)=[x^2-3]$ and
g(x) = x f(x) + 4x - 7 f(x), where [y] denotes	otes the greatest integer less than or equal to y for $y \in \mathbb{R}$. Then
	[JEE(Advanced) 2016]
(A) f is discontinuous exactly at three points	
(B) f is discontinuous exactly at four points	
(C) g is NOT differentiable exactly at four p	points in $\left(-\frac{1}{2},2\right)$
(D) g is NOT differentiable exactly at five p	points in $\left(-\frac{1}{2},2\right)$
Let $g : \mathbb{R} \to \mathbb{R}$ be a differentiable functions	with $g(0) = 0$, $g'(0) = 0$ and $g'(1) \neq 0$. Let
$f(\mathbf{x}) = \begin{cases} \frac{\mathbf{x}}{ \mathbf{x} } g(\mathbf{x}) &, \mathbf{x} \neq 0 \\ 0 &, \mathbf{x} = 0 \end{cases}$	

and $h(x) = e^{|x|}$ for all $x \in \mathbb{R}$. Let (foh)(x) denote f(h(x)) and (hof)(x) denote h(f(x)). Then which of the following is(are) true ? [JEE(Advanced) 2015] (B) h is differentiable at x = 0(A) f is differentiable at x = 0

(C) foh is differentiable at x = 0(D) hof is differentiable at x = 0

8.

6.

7.

9. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be respectively given by f(x) = |x| + 1 and $g(x) = x^2 + 1$. Define $h: \mathbb{R} \to \mathbb{R}$ by [JEE(Advanced) 2014]

$$\begin{split} \mathbf{h} &: \mathbb{R} \to \mathbb{R} \text{ by} \\ &\mathbf{h} \left(\mathbf{x} \right) \!=\! \begin{cases} \max \left\{ f \left(\mathbf{x} \right), \mathbf{g} \left(\mathbf{x} \right) \right\} & \text{if } \mathbf{x} \leq \mathbf{0}, \\ \min \left\{ f \left(\mathbf{x} \right), \mathbf{g} \left(\mathbf{x} \right) \right\} & \text{if } \mathbf{x} > \mathbf{0}. \end{cases} \end{split}$$

The number of points at which h(x) is not differentiable is

10. Let $f_1 : \mathbb{R} \to \mathbb{R}$, $f_2 : [0, \infty) \to \mathbb{R}$, $f_3 : \mathbb{R} \to \mathbb{R}$ and $f_4 : \mathbb{R} \to [0, \infty)$ be defined by [JEE(Advanced) 2014]

$$f_{1}(\mathbf{x}) = \begin{cases} |\mathbf{x}| & \text{if } \mathbf{x} < 0, \\ e^{\mathbf{x}} & \text{if } \mathbf{x} \ge 0; \end{cases}$$

$$f_{2}(\mathbf{x}) = \mathbf{x}^{2};$$

$$f_{3}(\mathbf{x}) = \begin{cases} \sin \mathbf{x} & \text{if } \mathbf{x} < 0, \\ \mathbf{x} & \text{if } \mathbf{x} \ge 0 \end{cases}$$
and
$$f_{4}(\mathbf{x}) = \begin{cases} f_{2}(f_{1}(\mathbf{x})) & \text{if } \mathbf{x} < 0, \\ f_{2}(f_{1}(\mathbf{x})) - 1 & \text{if } \mathbf{x} \ge 0. \end{cases}$$

$$\mathbf{List-\mathbf{I}}$$
P. f_{4} is
Q. f_{3} is
R. f_{2} of f_{1} is
S. f_{2} is
$$\mathbf{Codes:}$$

$$P \quad Q \quad \mathbf{R} \quad \mathbf{S}$$
(A) $3 \quad 1 \quad 4 \quad 2$
(B) $1 \quad 3 \quad 4 \quad 2$
(B) $1 \quad 3 \quad 4 \quad 2$
(C) $3 \quad 1 \quad 2 \quad 4$
(D) $1 \quad 3 \quad 2 \quad 4$

List-II

- 1. onto but not one-one
- 2. neither continuous nor one-one
- 3. differentiable but not one-one
- 4. continuous and one-one

3.

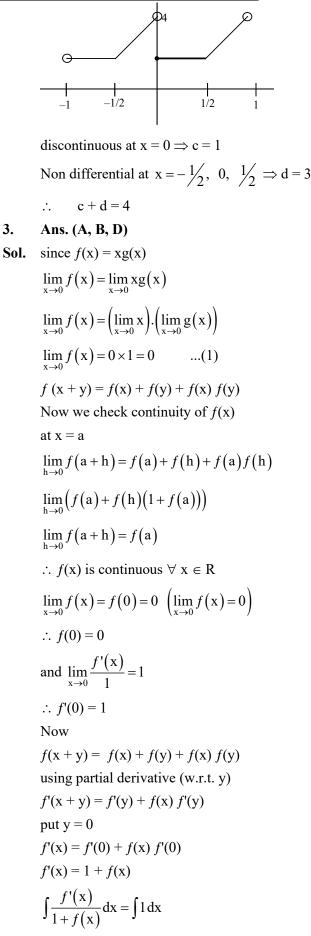
SOLUTIONS 1. Ans. (A,C) **Sol.** $f: R \to R$ $f(x) = (x^2 + \sin x) (x - 1) f(1^+)$ $= f(1^{-}) = f(1) = 0$ $fg(x): f(x).g(x) \quad fg: R \rightarrow R$ let fg(x) = h(x) = f(x).g(x) $h: R \to R$ option (c) h'(x) = f'(x)g(x) + f(x)g'(x)h'(1) = f'(1) g(1) + 0,(as f(1) = 0, g'(x) exists) \Rightarrow if g(x) is differentiable then h(x) is also differentiable (true) option (A) If g(x) is continuous at x = 1 then $g(1^+) = g(1^-) = g(1)$ $h'(1^+) = \lim_{h \to 0^+} \frac{h(1+h) - h(1)}{h}$ $h'(1^+) = \lim_{h \to 0^+} \frac{f(1+h)g(1+h) - 0}{h} = f'(1)g(1)$ $h'(1^{-}) = \lim_{h \to 0^{+}} \frac{f(1-h)g(1-h) - 0}{-h} = f'(1)g(1)$ h(x) = f(x).g(x) is differentiable So at x = 1(True) option (B) (D) $h'(1^+) = \lim_{h \to 0^+} \frac{h(1+h) - h(1)}{-h}$ $h'(1^+) = \lim_{h \to 0^+} \frac{f(1+h)g(1+h)}{h} = f'(1)g(1^+)$ $h'(1^-) = \lim_{h \to 0^+} \frac{f(1-h)g(1-h)}{-h} = f'(1).g(1^-)$ \Rightarrow g(1⁺) = g(1⁻)

So we cannot comment on the continuity and differentiability of the function.

2. Ans. (4)

Sol.
$$f(\mathbf{x}) = |2\mathbf{x} - 1| + |2\mathbf{x} + 1|$$

 $g(\mathbf{x}) = \{\mathbf{x}\}$
 $f(g(\mathbf{x})) = |2\{\mathbf{x}\} - 1| + |2\{\mathbf{x}\} + 1|$
 $= \begin{cases} 2 & \{\mathbf{x}\} \le \frac{1}{2} \\ 4\{\mathbf{x}\} & \{\mathbf{x}\} > \frac{1}{2} \end{cases}$



ALLEN[®]

 $\ell n \left| \left(1 + f(\mathbf{x}) \right) \right| = \mathbf{x} + \mathbf{C}$ f(0) = 0; c = 0 $\therefore |1 + f(x)| = e^{x}$ $1 + f(x) = \pm e^{x}$ or $f(x) = \pm e^{x} - 1$ Now $f(0) = 0 \therefore f(x) = e^{x} - 1$ $\therefore f(\mathbf{x}) = \mathbf{e}^{\mathbf{x}} - 1$ option (A) is correct and $f'(\mathbf{x}) = \mathbf{e}^{\mathbf{x}}$ f'(0) = 1 option(D) is correct $g(x) = \frac{f(x)}{x} = \begin{cases} \frac{e^{x} - 1}{x} & ; x \neq 0 \\ 1 & ; x = 0 \end{cases}$ $g'(0+h) = \lim_{h \to 0} \frac{g(0+h) - g(0)}{h}$ $=\lim_{h\to 0}\frac{e^{h}-1}{h}=\frac{1}{2}$ option (B) is correct 4. Ans. (2) **Sol.** $P(x, y) : f(x + y) = f(x)f'(y)+f'(x) f(y) \forall x, y \in \mathbb{R}$ P(0, 0): f(0) = f(0)f'(0) + f'(0) f(0) $\Rightarrow 1 = 2f(0)$ \Rightarrow f(0) = $\frac{1}{2}$ P(x, 0) : f(x) = f(x). f'(0) + f'(x).f(0) \Rightarrow f(x) = $\frac{1}{2}$ f(x) + f'(x) \Rightarrow f(x) = $\frac{1}{2}$ f(x) \Rightarrow f(x) = $e^{\frac{1}{2}x}$ $\Rightarrow \ln(f(4)) = 2$ Ans. (D) 5. **Sol.** (i) $f(x) = \sin \sqrt{1 - e^{-x^2}}$ $f'_{1}(x) = \cos \sqrt{1 - e^{-x^{2}}} \cdot \frac{1}{2\sqrt{1 - e^{-x^{2}}}} \left(0 - e^{-x^{2}} \cdot (-2x)\right)$ $f'_1(x)$ does not exist at x = 0

So. $P \rightarrow 2$

(ii)
$$f_{2}(x) = \begin{cases} \frac{|\sin x|}{\tan^{-1}x}, & x \neq 0 \\ 0 & x = 0 \end{cases}$$
$$\lim_{x \to 0^{+}} \frac{\sin x}{x} \frac{x}{\tan^{-1}x} = 1$$
$$\Rightarrow f_{2}(x) \text{ does not continuous at } x = 0$$
So $Q \to 1$
(iii)
$$f_{3}(x) = [\sin \ell n(x + 2)] = 0$$
$$1 < x + 2 < e^{\pi/2}$$
$$\Rightarrow 0 < \ell n(x + 2) < \frac{\pi}{2}$$
$$\Rightarrow 0 < \sin(\ell n(x + 2)) < 1$$
$$\Rightarrow f_{3}(x) = 0$$
So $R \to 4$
(iv)
$$f_{4}(x) = \begin{cases} x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
So $S \to 3$
6. Ans. (A, B)
Sol. If
$$x^{3} - x \ge 0 \Rightarrow \cos|x^{3} - x| = \cos(x^{3} - x)$$
$$x^{3} - x < 0 \Rightarrow \cos|x^{3} - x| = \cos(x^{3} - x)$$
Similarly
$$b|x|\sin|x^{3} + x| = bx\sin(x^{3} + x) \text{ for all } x \in R$$
$$\therefore \quad f(x) = a\cos(x^{3} - x) + bx\sin(x^{3} + x)$$
which is composition and sum of differentiable functions
therefore always continuous at differentiable.
7. Ans. (B, C)
Sol.
$$f(x) = [x^{2}] - 3$$
$$g(x) = (|x| + |4x - 7|) \neq 0 \text{ at } x = 1, \sqrt{2}, \sqrt{3} \text{ in } \left(-\frac{1}{2}, 2\right)$$

6.

7.

In $(0 - \delta, 0 + \delta)$

5

JEE Advanced Mathematics 10 Years Topicwise Questions with Solutions

ALLEN®

$$g(x) = (|x| + |4x - 7|) \cdot (-3)$$

$$\Rightarrow 'g' \text{ is non derivable at } x = 0.$$

$$In\left(\frac{7}{4} - \delta, \frac{7}{4} + \delta\right)$$

$$g(x) = 0 \text{ as } f(x) = 0$$

$$\Rightarrow \text{ Derivable at } x = \frac{7}{4}$$

$$\therefore 'g' \text{ is non-derivable at } 0, 1, \sqrt{2}, \frac{7}{4}$$
8. **Ans. (A, D)**
Sol. (A) $f(x) = \begin{cases} g(x) & , x > 0 \\ 0 & , x = 0 \\ -g(x) & , x < 0 \end{cases}$

$$\Rightarrow f'(x) = \begin{cases} g'(x) & , x \ge 0 \\ -g'(x) & , x < 0 \end{cases}$$

$$so 'A' \text{ is right}$$
(B) $h(x) = \begin{cases} e^x & , x \ge 0 \\ e^{-x} & , x < 0 \end{cases}$

$$\Rightarrow h'(x) = \begin{cases} e^x & , x \ge 0 \\ -g'(x) & , x < 0 \end{cases}$$

$$\Rightarrow h'(x) = \begin{cases} e^x & , x > 0 \\ -e^{-x} & , x < 0 \end{cases}$$

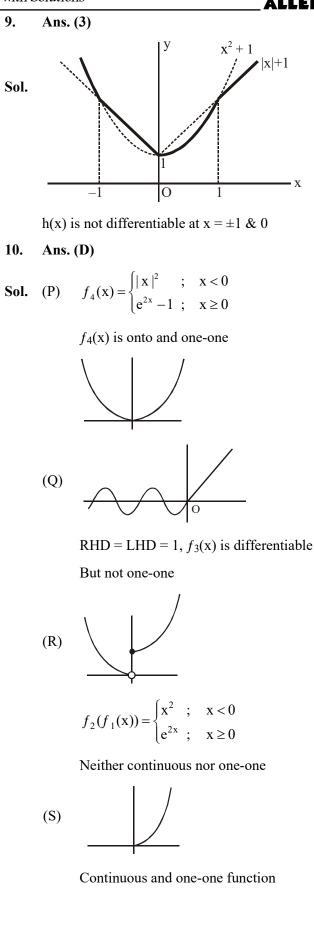
$$h'(0^+) = 1, h'(0^-) = -1, \therefore \text{ B is wrong}$$
(C) $f(h(x)) = g(h(x)) \text{ as } h(x) > 0$

$$z = g(e^{|x|}) = \begin{cases} g(e^x) & , x \ge 0 \\ g(e^{-x}) & , x < 0 \end{cases}$$

$$z' = \begin{cases} g'(e^x)e^x & , x > 0 \\ -g'(e^{-x})e^{-x} & , x < 0 \end{cases}$$

$$z'(0^+) = g'(1), z'(0^-) = -g'(1) \text{ and}$$

$$g'(1) \# -g'(1)$$
so C is wrong
(D) $\lim_{x \to 0} \frac{e^{|g(x)|} - 1}{|g(x)|} \cdot \frac{|g(x) - 0|}{x} \cdot \frac{|X|}{X} = 0$



6

8.