DETERMINANT

1. Let α, β and γ be real numbers. consider the following system of linear equations
$x+2 y+z=7$
[JEE(Advanced) 2023]
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Match each entry in List-I to the correct entries in List-II.

List-I

(P) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma=28$, then the system has
(Q) If $\beta=\frac{1}{2}(7 \alpha-3)$ and $\gamma \neq 28$, then the system has
(R) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma \neq 28$, then the system has
(S) If $\beta \neq \frac{1}{2}(7 \alpha-3)$ where $\alpha=1$ and $\gamma=28$, then the system has

List-II

(1) a unique solution
(2) no solution
(3) infinitely many solutions
(4) $x=11, y=-2$ and $z=0$ as a solution
(5) $x=-15, y=4$ and $z=0$ as a solution

The correct option is :
(A) (P) \rightarrow (3)
$(\mathrm{Q}) \rightarrow(2)(\mathrm{R}) \rightarrow(1)$
(1) $(\mathrm{S}) \rightarrow(4)$
(B) $(\mathrm{P}) \rightarrow(3)$
(3) $(\mathrm{Q}) \rightarrow(2)$
(2) $(\mathrm{R}) \rightarrow(5)(\mathrm{S}) \rightarrow(4)$
$(\mathrm{C})(\mathrm{P}) \rightarrow(2)(\mathrm{Q}) \rightarrow(1)(\mathrm{R}) \rightarrow(4)(\mathrm{S}) \rightarrow(5)$
(D) $(\mathrm{P}) \rightarrow$
(2) (Q) $\rightarrow(1)(\mathrm{R}) \rightarrow(1)(\mathrm{S}) \rightarrow(3)$
2. Let p, q, r be nonzero real numbers that are, respectively, the $10^{\text {th }}, 100^{\text {th }}$ and $1000^{\text {th }}$ terms of a harmonic progression. Consider the system of linear equations
[JEE(Advanced) 2022]

$$
\begin{gathered}
x+y+z=1 \\
10 x+100 y+1000 z=0 \\
q r x+\operatorname{pr} y+p q z=0
\end{gathered}
$$

List-I		List-II	
(I)	If $\frac{q}{r}=10$, then the system of linear equations has	(P)	$x=0, y=\frac{10}{9}, z=-\frac{1}{9}$ as a solution
(II)	If $\frac{p}{r} \neq 100$, then the system of linear equations has	(Q)	$x=\frac{10}{9}, y=-\frac{1}{9}, z=0$ as a solution
(III)	If $\frac{p}{q} \neq 10$, then the system of linear equations has	(R)	infinitely many solutions
(IV)	If $\frac{p}{q}=10$, then the system of linear equations has	(S)	no solution
		(T)	at least one solution

The correct option is:
(A) (I) \rightarrow (T); (II) \rightarrow (R); (III) \rightarrow (S); (IV) \rightarrow (T)
(B) (I) \rightarrow (Q); (II) \rightarrow (S); (III) \rightarrow (S); (IV) \rightarrow (R)
(C) (I) \rightarrow (Q); (II) $\rightarrow(\mathrm{R}) ;(\mathrm{III}) \rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{R})$
(D) (I) \rightarrow (T); (II) \rightarrow (S); (III) $\rightarrow(\mathrm{P}) ;(\mathrm{IV}) \rightarrow(\mathrm{T})$
3. The total number of distinct $x \in R$ for which $\left|\begin{array}{ccc}x & x^{2} & 1+x^{3} \\ 2 x & 4 x^{2} & 1+8 x^{3} \\ 3 x & 9 x^{2} & 1+27 x^{3}\end{array}\right|=10$ is \quad [JEE(Advanced) 2016]
4. Which of the following values of α satisfy the equation $\left|\begin{array}{lll}(1+\alpha)^{2} & (1+2 \alpha)^{2} & (1+3 \alpha)^{2} \\ (2+\alpha)^{2} & (2+2 \alpha)^{2} & (2+3 \alpha)^{2} \\ (3+\alpha)^{2} & (3+2 \alpha)^{2} & (3+3 \alpha)^{2}\end{array}\right|=-648 \alpha$?
[JEE(Advanced) 2015]
(A) -4
(B) 9
(C) -9
(D) 4

SOLUTIONS

1. Ans. (A)

Sol. Given $x+2 y+z=7$
$x+\alpha z=11$
$2 x-3 y+\beta z=\gamma$
Now, $\Delta=\left|\begin{array}{ccc}1 & 2 & 1 \\ 1 & 0 & \alpha \\ 2 & -3 & \beta\end{array}\right|=7 \alpha-2 \beta-3$
\therefore if $\beta=\frac{1}{2}(7 \alpha-3)$
$\Rightarrow \Delta=0$
Now, $\Delta_{\mathrm{x}}=\left|\begin{array}{ccc}7 & 2 & 1 \\ 11 & 0 & \alpha \\ \gamma & -3 & \beta\end{array}\right|$
$=21 \alpha-22 \beta+2 \alpha \gamma-33$
\therefore if $\gamma=28$
$\Rightarrow \Delta_{\mathrm{x}}=0$
$\Delta_{y}=\left|\begin{array}{ccc}1 & 7 & 1 \\ 1 & 11 & \alpha \\ 2 & \gamma & \beta\end{array}\right|$
$\Delta_{y}=4 \beta+14 \alpha-\alpha \gamma+\gamma-22$
\therefore if $\gamma=28$
$\Rightarrow \Delta_{y}=0$
Now, $\Delta_{z}=\left|\begin{array}{ccc}1 & 2 & 7 \\ 1 & 0 & 11 \\ 2 & -3 & \gamma\end{array}\right|=56-2 \gamma$
If $\gamma=28$
$\Rightarrow \Delta_{\mathrm{z}}=0$
\therefore if $\gamma=28$ and $\beta=\frac{1}{2}(7 \alpha-3)$
\Rightarrow system has infinite solution
and if $\gamma \neq 28$
\Rightarrow system has no solution
$\Rightarrow \mathrm{P} \rightarrow(3) ; \mathrm{Q} \rightarrow(2)$
Now if $\beta \neq \frac{1}{2}(7 \alpha-3)$
$\Rightarrow \Delta \neq 0$
and for $\alpha=1$ clearly
$\mathrm{y}=-2$ is always be the solution
\therefore if $\gamma \neq 28$
System has a unique solution
if $\gamma=28$
$\Rightarrow \mathrm{x}=11, \mathrm{y}=-2$ and
$\mathrm{z}=0$ will be one of the solution
$\therefore \mathrm{R} \rightarrow 1 ; \mathrm{S} \rightarrow 4$
\therefore option ' A ' is correct
2. Ans. (B)

Sol. If $\frac{q}{r}=10 \Rightarrow A=D \Rightarrow D_{x}=D_{y}=D_{z}=0$
So, there are infinitely many solutions
Look of infinitely many solutions can be given as
$x+y+z=1$
$\& 10 x+100 y+1000 z=0$
$\Rightarrow \mathrm{x}+10 \mathrm{y}+100 \mathrm{z}=0$
Let $\mathrm{z}=\lambda$
then $x+y=1-\lambda$
and $x+10 y=-100 \lambda$
$\Rightarrow \mathrm{x}=\frac{10}{9}+10 \lambda ; \mathrm{y}=\frac{-1}{9}-11 \lambda$
i.e., $(x, y, z) \equiv\left(\frac{10}{9}+10 \lambda, \frac{-1}{9}-11 \lambda, \lambda\right)$
$\mathrm{Q}\left(\frac{10}{9}, \frac{-1}{9}, 0\right)$ valid for $\lambda=0$
$\mathrm{P}\left(0, \frac{10}{9}, \frac{-1}{9}\right)$ not valid for any λ.
(I) $\rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{T}$
(II) If $\frac{\mathrm{p}}{\mathrm{r}} \neq 100$, then $\mathrm{D}_{\mathrm{y}} \neq 0$

So no solution
(II) \rightarrow (S)
(III) If $\frac{p}{q} \neq 10$, then $D_{z} \neq 0$ so, no solution
(III) \rightarrow (S)
(IV) If $\frac{p}{q}=10 \Rightarrow D_{z}=0 \Rightarrow D_{x}=D_{y}=0$
so infinitely many solution
$(\mathrm{IV}) \rightarrow \mathrm{Q}, \mathrm{R}, \mathrm{T}$
3. Ans. (2)

Sol. $\quad \mathrm{x}^{3}\left|\begin{array}{ccc}1 & 1 & 1+\mathrm{x}^{3} \\ 2 & 4 & 1+8 \mathrm{x}^{3} \\ 3 & 9 & 1+27 \mathrm{x}^{3}\end{array}\right|=10$

$$
\begin{aligned}
& \Rightarrow \quad x^{3}\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right|+x^{3} \cdot x^{3}\left|\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & 8 \\
3 & 9 & 27
\end{array}\right|=0 \\
& \Rightarrow \quad x^{3}(25-23)+6 x^{6} \cdot 2=10 \\
& \Rightarrow \quad 6 x^{6}+x^{3}-5=0 \\
& \Rightarrow \quad x^{3}=\frac{5}{6},-1
\end{aligned}
$$

two real solutions
4. Ans. (B, C)

Sol. $\left|\begin{array}{ccc}1 & \alpha & \alpha^{2} \\ 4 & 2 \alpha & \alpha^{2} \\ 9 & 3 \alpha & \alpha^{2}\end{array}\right|\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & 6 \\ 1 & 4 & 9\end{array}\right|=-648 \alpha$
$\alpha^{3}\left|\begin{array}{lll}1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1\end{array}\right|\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 4 & 6 \\ 1 & 4 & 9\end{array}\right|=-648 \alpha$
$-8 \alpha^{3}=-648 \alpha$
$\Rightarrow \alpha^{3}=81 \alpha$
$\therefore \alpha=0,9,-9$

