ALLEN[®]

DETERMINANT

1.	Let α , β and γ be real numbers. consider the following system of linear equations x + 2y + z = 7 [JEE(Advanced $x + \alpha z = 11$									
		$y + \beta z = \gamma$								
	Iviateii	each entry in List-I to the correct entries in List-II. List-I	List-II							
	(P) If	$B = \frac{1}{2}(7\alpha - 3)$ and $\gamma = 28$, then the system has	(1) a unique solution							
	(Q) If	$\beta = \frac{1}{2}(7\alpha - 3)$ and $\gamma \neq 28$, then the system has	(2) no solution							
	(R) If	$3 \neq \frac{1}{2}$ (7 α - 3) where $\alpha = 1$ and $\gamma \neq 28$,	(3) infinitely many solutions							
	the	n the system has								
	(S) If $\beta \neq \frac{1}{2}$ (7 α - 3) where $\alpha = 1$ and $\gamma = 28$,			(4) $x = 11$, $y = -2$ and $z = 0$ as a solution						
	then the system has									
			(5) $x = -15$, $y = 4$ and $z = 0$ as a solution							
		The correct option is :								
		$(A) (P) \to (3) (Q) \to (2) (R) \to (1) (S) \to (4) \qquad (B) (P) \to (3) (Q) \to (2) (R) \to (5) (S) \to (4)$								
2	(C) (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) (D) (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (1) (S) \rightarrow (3) Let <i>p</i> , <i>q</i> , <i>r</i> be nonzero real numbers that are, respectively, the 10 th , 100 th and 1000 th terms of a harmonic									
2.		<i>q</i> , <i>r</i> be nonzero real numbers that are, respectively, t ssion. Consider the system of linear equations	ne 10	JEE(Advanced) 2022						
	progre	x + y + z = 1		[JEE(Advanced) 2022]						
		x + y + z = 1 10x + 100y + 1000z = 0								
		qr x + pr y + pq z = 0.								
		List-I		List-II						
	(I)	If $\frac{q}{r} = 10$, then the system of linear equations has	(P)	$x = 0, y = \frac{10}{9}, z = -\frac{1}{9}$ as a solution						
	(II)	If $\frac{p}{r} \neq 100$, then the system of linear equations has	(Q)	$x = \frac{10}{9}, y = -\frac{1}{9}, z = 0$ as a solution						
	(III)	If $\frac{p}{2} \neq 10$, then the system of linear equations has	(R)	infinitely many solutions						

(III)	If $\frac{p}{q} \neq 10$, then the system of linear equations has	(R)	infinitely many solutions
(IV)	(IV) If $\frac{p}{q} = 10$, then the system of linear equations has		no solution
		(T)	at least one solution

The correct option is:

 $\begin{array}{l} (A) (I) \to (T); (II) \to (R); (III) \to (S); (IV) \to (T) \\ (B) (I) \to (Q); (II) \to (S); (III) \to (S); (IV) \to (R) \\ (C) (I) \to (Q); (II) \to (R); (III) \to (P); (IV) \to (R) \\ (D) (I) \to (T); (II) \to (S); (III) \to (P); (IV) \to (T) \end{array}$

3.	The total number of distinct $x \in R$ for which	x 2x 3x	x2 4x2 9x2	$1 + x^{3}$ $1 + 8x^{3}$ $1 + 27x^{3}$	= 10 is	[JEE(Advanced) 2016]
4.	Which of the following values of α satisfy the	e equa	ation	$ \begin{vmatrix} (1+\alpha)^2 \\ (2+\alpha)^2 \\ (3+\alpha)^2 \end{vmatrix} $	$(1+2\alpha)^2$ $(2+2\alpha)^2$ $(3+2\alpha)^2$	$ \frac{(1+3\alpha)^2}{(2+3\alpha)^2} = -648\alpha? (3+3\alpha)^2 $

[JEE(Advanced) 2015]

_ALLEN®

ALLEN®

SOLUTIONS 1. Ans. (A) Given x + 2y + z = 7 (1) Sol. $x + \alpha z = 11$ (2) $2x - 3y + \beta z = \gamma$ (3) Now, $\Delta = \begin{vmatrix} 1 & 2 & 1 \\ 1 & 0 & \alpha \\ 2 & -3 & \beta \end{vmatrix} = 7\alpha - 2\beta - 3$ \therefore if $\beta = \frac{1}{2}(7\alpha - 3)$ $\Rightarrow \Delta = 0$ Now, $\Delta_{x} = \begin{vmatrix} 7 & 2 & 1 \\ 11 & 0 & \alpha \\ \gamma & -3 & \beta \end{vmatrix}$ $=21\alpha - 22\beta + 2\alpha\gamma - 33$ \therefore if $\gamma = 28$ $\Rightarrow \Delta_x = 0$ $\Delta_{\mathbf{y}} = \begin{vmatrix} 1 & 7 & 1 \\ 1 & 11 & \alpha \\ 2 & \gamma & \beta \end{vmatrix}$ $\Delta_{\rm y} = 4\beta + 14\alpha - \alpha\gamma + \gamma - 22$ \therefore if $\gamma = 28$ $\Rightarrow \Delta_v = 0$ Now, $\Delta_z = \begin{vmatrix} 1 & 2 & 7 \\ 1 & 0 & 11 \\ 2 & -3 & \gamma \end{vmatrix} = 56 - 2\gamma$ If $\gamma = 28$ $\Rightarrow \Delta_z = 0$ \therefore if $\gamma = 28$ and $\beta = \frac{1}{2}(7\alpha - 3)$ \Rightarrow system has infinite solution and if $\gamma \neq 28$ \Rightarrow system has no solution \Rightarrow P \rightarrow (3); Q \rightarrow (2) Now if $\beta \neq \frac{1}{2}(7\alpha - 3)$ $\Rightarrow \Delta \neq 0$ and for $\alpha = 1$ clearly

y = -2 is always be the solution \therefore if $\gamma \neq 28$ System has a unique solution if $\gamma = 28$ \Rightarrow x = 11, y = -2 and z = 0 will be one of the solution $\therefore R \rightarrow 1; S \rightarrow 4$.: option 'A' is correct 2. Ans. (B) **Sol.** If $\frac{q}{r} = 10 \Rightarrow A = D \Rightarrow D_x = D_y = D_z = 0$ So, there are infinitely many solutions Look of infinitely many solutions can be given as x + y + z = 1& 10x + 100y + 1000z = 0 \Rightarrow x + 10y + 100z = 0 Let $z = \lambda$ then $x + y = 1 - \lambda$ and $x + 10y = -100\lambda$ \Rightarrow x = $\frac{10}{9}$ + 10 λ ; y = $\frac{-1}{9}$ - 11 λ i.e., $(\mathbf{x}, \mathbf{y}, \mathbf{z}) \equiv \left(\frac{10}{9} + 10\lambda, \frac{-1}{9} - 11\lambda, \lambda\right)$ $Q\left(\frac{10}{9}, \frac{-1}{9}, 0\right)$ valid for $\lambda = 0$ $P\!\left(0,\!\frac{10}{q},\!\frac{-1}{q}\right) \text{ not valid for any } \lambda.$ $(I) \rightarrow Q, R, T$ (II) If $\frac{p}{r} \neq 100$, then $D_y \neq 0$ So no solution $(II) \rightarrow (S)$ (III) If $\frac{p}{q} \neq 10$, then $D_z \neq 0$ so, no solution (III) \rightarrow (S) (IV) If $\frac{p}{q} = 10 \implies D_z = 0 \implies D_x = D_y = 0$ so infinitely many solution $(IV) \rightarrow Q, R, T$

3. Ans. (2)
Sol.
$$x^{3}\begin{vmatrix} 1 & 1 & 1+x^{3} \\ 2 & 4 & 1+8x^{3} \\ 3 & 9 & 1+27x^{3} \end{vmatrix} = 10$$

 $\Rightarrow x^{3}\begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{vmatrix} + x^{3}.x^{3}\begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 8 \\ 3 & 9 & 27 \end{vmatrix} = 0$
 $\Rightarrow x^{3}(25-23) + 6x^{6}.2 = 10$
 $\Rightarrow 6x^{6} + x^{3} - 5 = 0$
 $\Rightarrow x^{3} = \frac{5}{6}, -1$

two real solutions

4. Ans. (B, C)

Sol.
$$\begin{vmatrix} 1 & \alpha & \alpha^{2} \\ 4 & 2\alpha & \alpha^{2} \\ 9 & 3\alpha & \alpha^{2} \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 6 \\ 1 & 4 & 9 \end{vmatrix} = -648\alpha$$
$$\alpha^{3} \begin{vmatrix} 1 & 1 & 1 \\ 4 & 2 & 1 \\ 9 & 3 & 1 \end{vmatrix} \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 6 \\ 1 & 4 & 9 \end{vmatrix} = -648\alpha$$
$$\Rightarrow \alpha^{3} = -648\alpha$$
$$\Rightarrow \alpha^{3} = -648\alpha$$
$$\Rightarrow \alpha^{3} = 81\alpha$$
$$\therefore \alpha = 0,9,-9$$