CONTINUITY

1. Let $[x]$ be the greatest integer less than or equal to x. Then, at which of the following point(s) the function $f(\mathrm{x})=\mathrm{x} \cos (\pi(\mathrm{x}+[\mathrm{x}]))$ is discontinuous ?
[JEE(Advanced) 2017]
(A) $x=-1$
(B) $x=0$
(C) $x=2$
(D) $x=1$
2. For every pair of continuous function $f, \mathrm{~g}:[0,1] \rightarrow \mathbb{R}$ such that
$\max \{f(\mathrm{x}): \mathrm{x} \in[0,1]\}=\max \{\mathrm{g}(\mathrm{x}): \mathrm{x} \in[0,1]\}$,
the correct statement(s) is(are) :
[JEE(Advanced) 2014]
(A) $(f(\mathrm{c}))^{2}+3 f(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+3 \mathrm{~g}(\mathrm{c})$ for some $\mathrm{c} \in[0,1]$
(B) $(f(\mathrm{c}))^{2}+f(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+3 \mathrm{~g}(\mathrm{c})$ for some $\mathrm{c} \in[0,1]$
(C) $(f(\mathrm{c}))^{2}+3 f(\mathrm{c})=(\mathrm{g}(\mathrm{c}))^{2}+\mathrm{g}(\mathrm{c})$ for some $\mathrm{c} \in[0,1]$
(D) $(f(\mathrm{c}))^{2}=(\mathrm{g}(\mathrm{c}))^{2}$ for some $\mathrm{c} \in[0,1]$

SOLUTIONS

1. Ans. (A, C, D)

Sol. $f(\mathrm{x})=\mathrm{x} \cos (\pi \mathrm{x}+[\mathrm{x}] \pi)$
$\Rightarrow f(\mathrm{x})=(-1)^{[\mathrm{x}]} \mathrm{x} \cos \pi \mathrm{x}$.
Discontinuous at all integers except zero.
2. Ans. (A, D)

Sol. $f, \mathrm{~g}[0,1] \rightarrow \mathrm{R}$
we take two cases.
Let $f \& \mathrm{~g}$ attain their common maximum value at p .
$\Rightarrow f(\mathrm{p})=\mathrm{g}(\mathrm{p})$ where $\mathrm{p} \in[0,1]$
let $f \& \mathrm{~g}$ attain their common maximum value at different points.
$\Rightarrow f(\mathrm{a})=\mathrm{M} \& \mathrm{~g}(\mathrm{~b})=\mathrm{M}$
$\Rightarrow f(\mathrm{a})-\mathrm{g}(\mathrm{a})>0 \& f(\mathrm{~b})-\mathrm{g}(\mathrm{b})<0$
$\Rightarrow f(\mathrm{c})-\mathrm{g}(\mathrm{c})=0$ for some $\mathrm{c} \in[0,1]$ as ' f ' \& 'g' are continuous functions.
$\Rightarrow f(\mathrm{c})-\mathrm{g}(\mathrm{c})=0$ for some $\mathrm{c} \in[0,1]$ for all cases. ...(1)
Option $(\mathrm{A}) \Rightarrow f^{2}(\mathrm{c})-\mathrm{g}^{2}(\mathrm{c})+3(f(\mathrm{c})-\mathrm{g}(\mathrm{c}))=0$ which is true from (1)
Option (D) $\Rightarrow f^{2}(\mathrm{c})-\mathrm{g}^{2}(\mathrm{c})=0$ which is true from (1)
Now, if we take $f(\mathrm{x})=1 \& \mathrm{~g}(\mathrm{x})=1 \forall \mathrm{x} \in[0,1]$ options (B) \& (C) does not hold. Hence option (A) \& (D) are correct.

