CIRCLE

1. Let C_{1} be the circle of radius 1 with center at the origin. Let C_{2} be the circle of radius r with center at the point $\mathrm{A}=(4,1)$, where $1<\mathrm{r}<3$. Two distinct common tangents PQ and ST of C_{1} and C_{2} are drawn. The tangent $P Q$ touches C_{1} at P and C_{2} at Q . The tangent $S T$ touches C_{1} at S and C_{2} at T. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the x-axis at a point B. If $A B=\sqrt{5}$, then the value of r^{2} is
[JEE(Advanced) 2023]
2. Let ABC be the triangle with $\mathrm{AB}=1, \mathrm{AC}=3$ and $\angle \mathrm{BAC}=\frac{\pi}{2}$. If a circle of radius $\mathrm{r}>0$ touches the sides AB, AC and also touches internally the circumcircle of the triangle ABC , then the value of r is \qquad .
[JEE(Advanced) 2022]
3. Let G be a circle of radius $R>0$. Let $G_{1}, G_{2}, \ldots, G_{n}$ be n circles of equal radius $r>0$. Suppose each of the n circles $G_{1}, G_{2}, \ldots, G_{n}$ touches the circle G externally. Also, for $i=1,2, \ldots, n-1$, the circle G_{i} touches G_{i+1} externally, and G_{n} touches G_{1} externally. Then, which of the following statements is/are TRUE ?
[JEE(Advanced) 2022]
(A) If $\mathrm{n}=4$, then $(\sqrt{2}-1) \mathrm{r}<\mathrm{R}$
(B) If $\mathrm{n}=5$, then $\mathrm{r}<\mathrm{R}$
(C) If $\mathrm{n}=8$, then $(\sqrt{2}-1) \mathrm{r}<\mathrm{R}$
(D) If $\mathrm{n}=12$, then $\sqrt{2}(\sqrt{3}+1) \mathrm{r}>\mathrm{R}$
4. Consider a triangle Δ whose two sides lie on the x-axis and the line $x+y+1=0$. If the orthocenter of Δ is $(1,1)$, then the equation of the circle passing through the vertices of the triangle Δ is
[JEE(Advanced) 2021]
(A) $x^{2}+y^{2}-3 x+y=0$
(B) $x^{2}+y^{2}+x+3 y=0$
(C) $x^{2}+y^{2}+2 y-1=0$
(D) $x^{2}+y^{2}+x+y=0$

Paragraph for Question No. 5 and 6

Let

$$
\mathrm{M}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{R} \times \mathbb{R}: \mathrm{x}^{2}+\mathrm{y}^{2} \leq \mathrm{r}^{2}\right\}
$$

where $\mathrm{r}>0$. Consider the geometric progression $\mathrm{a}_{\mathrm{n}}=\frac{1}{2^{\mathrm{n}-1}}, \mathrm{n}=1,2,3, \ldots$. Let $\mathrm{S}_{0}=0$ and, for $\mathrm{n} \geq 1$, let S_{n} denote the sum of the first n terms of this progression. For $n \geq 1$, let C_{n} denote the circle with center $\left(\mathrm{S}_{\mathrm{n}-1}, 0\right)$ and radius a_{n}, and D_{n} denote the circle with center $\left(\mathrm{S}_{\mathrm{n}-1}, \mathrm{~S}_{\mathrm{n}-1}\right)$ and radius a_{n}.
5. Consider M with $\mathrm{r}=\frac{1025}{513}$. Let k be the number of all those circles C_{n} that are inside M . Let l be the maximum possible number of circles among these k circles such that no two circles intersect. Then
[JEE(Advanced) 2021]
(A) $\mathrm{k}+2 l=22$
(B) $2 \mathrm{k}+l=26$
(C) $2 \mathrm{k}+3 \mathrm{l}=34$
(D) $3 \mathrm{k}+2 l=40$
6. Consider M with $\mathrm{r}=\frac{\left(2^{199}-1\right) \sqrt{2}}{2^{198}}$. The number of all those circles D_{n} that are inside M is
[JEE(Advanced) 2021]
(A) 198
(B) 199
(C) 200
(D) 201
7. Let O be the centre of the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{r}^{2}$, where $\mathrm{r}>\frac{\sqrt{5}}{2}$. Suppose PQ is a chord of this circle and the equation of the line passing through P and Q is $2 x+4 y=5$. If the centre of the circumcircle of the triangle OPQ lies on the line $x+2 y=4$, then the value of r is \qquad [JEE(Advanced) 2020]
8. A line $y=m x+1$ intersects the circle $(x-3)^{2}+(y+2)^{2}=25$ at the points P and Q. If the midpoint of the line segment PQ has x -coordinate $-\frac{3}{5}$, then which one of the following options is correct?
[JEE(Advanced) 2019]
(A) $6 \leq \mathrm{m}<8$
(B) $2 \leq \mathrm{m}<4$
(C) $4 \leq \mathrm{m}<6$
(D) $-3 \leq \mathrm{m}<-1$
9. Let the point B be the reflection of the point $A(2,3)$ with respect to the line $8 x-6 y-23=0$. Let Γ_{A} and Γ_{B} be circles of radii 2 and 1 with centres A and B respectively. Let T be a common tangent to the circles Γ_{A} and Γ_{B} such that both the circles are on the same side of T . If C is the point of intersection of T and the line passing through A and B, then the length of the line segment $A C$ is \qquad
[JEE(Advanced) 2019]
10. Answer the following by appropriately matching the lists based on the information given in the paragraph
Let the circles $C_{1}: x^{2}+y^{2}=9$ and $C_{2}:(x-3)^{2}+(y-4)^{2}=16$, intersect at the points X and Y. Suppose that another circle $C_{3}:(x-h)^{2}+(y-k)^{2}=r^{2}$ satisfies the following conditions :
(i) centre of C_{3} is collinear with the centres of C_{1} and C_{2}
(ii) C_{1} and C_{2} both lie inside C_{3}, and
(iii) C_{3} touches C_{1} at M and C_{2} at N .

Let the line through X and Y intersect C_{3} at Z and W , and let a common tangent of C_{1} and C_{3} be a tangent to the parabola $x^{2}=8 \alpha y$.
There are some expression given in the List-I whose values are given in List-II below:
[JEE(Advanced) 2019]

List-I

(I) $2 \mathrm{~h}+\mathrm{k}$
(II)
$\frac{\text { Length of ZW }}{\text { Length of XY }}$
(P) 6
(Q) $\sqrt{6}$
(R) $\frac{5}{4}$
(IV) α
$\frac{\text { Area of triangle MZN }}{\text { Area of triangle ZMW }}$ α
(S) $\frac{21}{5}$
(T) $2 \sqrt{6}$
(U) $\frac{10}{3}$

List-II

mbination?
Which of the following is the only INCORRECT combination?
Options:
(A) (IV), (S)
(B) (IV), (U)
(C) (III), (R)
(D) (I), (P)
11. Answer the following by appropriately matching the lists based on the information given in the paragraph.
Let the circles $C_{1}: x^{2}+y^{2}=9$ and $C_{2}:(x-3)^{2}+(y-4)^{2}=16$, intersect at the points X and Y. Suppose that another circle $C_{3}:(x-h)^{2}+(y-k)^{2}=r^{2}$ satisfies the following conditions :
(i) centre of C_{3} is collinear with the centres of C_{1} and C_{2}
(ii) C_{1} and C_{2} both lie inside C_{3}, and
(iii) C_{3} touches C_{1} at M and C_{2} at N .

Let the line through X and Y intersect C_{3} at Z and W , and let a common tangent of C_{1} and C_{3} be a tangent to the parabola $x^{2}=8 \alpha y$.
There are some expression given in the List-I whose values are given in List-II below:
[JEE(Advanced) 2019]

List-I

(I) $2 \mathrm{~h}+\mathrm{k}$
(II) $\frac{\text { Length of } \mathrm{ZW}}{\text { Length of } \mathrm{XY}}$
(III) $\frac{\text { Area of triangle MZN }}{\text { Area of triangle ZMW }}$
(IV) α

List-II

(P) 6
(Q) $\sqrt{6}$
(R) $\frac{5}{4}$
(S) $\frac{21}{5}$
(T) $2 \sqrt{6}$
(U) $\frac{10}{3}$

Which of the following is the only CORRECT combination?
Options :
(A) (II), (T)
(B) (I), (S)
(C) (I), (U)
(D) (II), (Q)

Paragraph for Question No. 12 and 13

Let S be the circle in the $x y$-plane defined by the equation $x^{2}+y^{2}=4$
12. Let $\mathrm{E}_{1} \mathrm{E}_{2}$ and $\mathrm{F}_{1} \mathrm{~F}_{2}$ be the chord of S passing through the point $\mathrm{P}_{0}(1,1)$ and parallel to the x -axis and the y-axis, respectively. Let $G_{1} G_{2}$ be the chord of S passing through P_{0} and having slop -1 . Let the tangents to S at E_{1} and E_{2} meet at E_{3}, the tangents of S at F_{1} and F_{2} meet at F_{3}, and the tangents to S at G_{1} and G_{2} meet at G_{3}. Then, the points E_{3}, F_{3} and G_{3} lie on the curve
[JEE(Advanced) 2018]
(A) $x+y=4$
(B) $(x-4)^{2}+(y-4)^{2}=16$
(C) $(x-4)(y-4)=4$
(D) $x y=4$
13. Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N . Then, the mid-point of the line segment MN must lie on the curve-
[JEE(Advanced) 2018]
(A) $(x+y)^{2}=3 x y$
(B) $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$
(C) $x^{2}+y^{2}=2 x y$
(D) $x^{2}+y^{2}=x^{2} y^{2}$
14. Let T be the line passing through the points $\mathrm{P}(-2,7)$ and $\mathrm{Q}(2,-5)$. Let F_{1} be the set of all pairs of circles (S_{1}, S_{2}) such that T is tangents to S_{1} at P and tangent to S_{2} at Q, and also such that S_{1} and S_{2} touch each other at a point, say, M. Let E_{1} be the set representing the locus of M as the pair $\left(S_{1}, S_{2}\right)$ varies in F_{1}. Let the set of all straight line segments joining a pair of distinct points of E_{1} and passing through the point $R(1,1)$ be F_{2}. Let E_{2} be the set of the mid-points of the line segments in the set F_{2}. Then, which of the following statement(s) is (are) TRUE ?
[JEE(Advanced) 2018]
(A) The point $(-2,7)$ lies in E_{1}
(B) The point $\left(\frac{4}{5}, \frac{7}{5}\right)$ does NOT lie in E_{2}
(C) The point $\left(\frac{1}{2}, 1\right)$ lies in E_{2}
(D) The point $\left(0, \frac{3}{2}\right)$ does NOT lie in E_{1}
15. For how many values of p, the circle $x^{2}+y^{2}+2 x+4 y-p=0$ and the coordinate axes have exactly three common points?
[JEE(Advanced) 2017]
16. The circle $C_{1}: x^{2}+y^{2}=3$, with centre at O, intersects the parabola $x^{2}=2 y$ at the point P in the first quadrant. Let the tangent to the circle C_{1} at P touches other two circles C_{2} and C_{3} at R_{2} and R_{3}, respectively. Suppose C_{2} and C_{3} have equal radii $2 \sqrt{3}$ and centres Q_{2} and Q_{3}, respectively. If Q_{2} and Q_{3} lie on the y-axis, then-
[JEE(Advanced) 2016]
(A) $\mathrm{Q}_{2} \mathrm{Q}_{3}=12$
(B) $\mathrm{R}_{2} \mathrm{R}_{3}=4 \sqrt{6}$
(C) area of the triangle $\mathrm{OR}_{2} \mathrm{R}_{3}$ is $6 \sqrt{2}$
(D) area of the triangle $\mathrm{PQ}_{2} \mathrm{Q}_{3}$ is $4 \sqrt{2}$
17. Let $R S$ be the diameter of the circle $x^{2}+y^{2}=1$, where S is the point $(1,0)$. Let P be a variable point (other than R and S) on the circle and tangents to the circle at S and P meet at the point Q . The normal to the circle at P intersects a line drawn through Q parallel to RS at point E . then the locus of E passes through the point(s)-
[JEE(Advanced) 2016]
(A) $\left(\frac{1}{3}, \frac{1}{\sqrt{3}}\right)$
(B) $\left(\frac{1}{4}, \frac{1}{2}\right)$
(C) $\left(\frac{1}{3},-\frac{1}{\sqrt{3}}\right)$
(D) $\left(\frac{1}{4},-\frac{1}{2}\right)$
18. A circle S passes through the point $(0,1)$ and is orthogonal to the circles $(x-1)^{2}+y^{2}=16$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=1$. Then :-
[JEE(Advanced) 2014]
(A) radius of S is 8
(B) radius of S is 7
(C) centre of S is $(-7,1)$
(D) centre is S is $(-8,1)$

SOLUTIONS

1. Ans. (2)

Sol.

radical axis $8 x+2 y-17=1-r^{2}$
$8 \mathrm{x}+2 \mathrm{y}=18-\mathrm{r}^{2}$
$\mathrm{B}\left(\frac{18-\mathrm{r}^{2}}{8}, 0\right) \mathrm{A}(4,1)$
$\mathrm{AB}=\sqrt{5}$
$\sqrt{\left(\frac{18-\mathrm{r}^{2}}{8}-4\right)^{2}+1}=\sqrt{5}$
$\mathrm{r}^{2}=2$
$\Rightarrow \mathrm{n}=\sin \alpha+\cos \alpha$
2. Ans. (0.83 or 0.84)

Sol. $4-\sqrt{10}=0.83$ or 0.84

$\mathrm{C}_{1}\left(\frac{1}{2}, \frac{3}{2}\right)$ and $\mathrm{r}_{1}=\frac{\sqrt{10}}{2}$
$\mathrm{C}_{2}=(\mathrm{r}, \mathrm{r})$
\therefore circle C_{2} touches C_{1} internally
$\Rightarrow \mathrm{C}_{1} \mathrm{C}_{2}=\left|\mathrm{r}-\frac{\sqrt{10}}{2}\right|$
$\Rightarrow\left(r-\frac{1}{2}\right)^{2}+\left(r-\frac{3}{2}\right)^{2}=\left(r-\frac{\sqrt{10}}{2}\right)^{2}$
$r^{2}-4 r+\sqrt{10} r=0$
$r=0$ (reject) or $r=4-\sqrt{10}$
3. Ans. (C, D)

Sol.
Let C

$2(R+r) \sin \frac{\pi}{n}=2 r$
$\frac{\mathrm{R}+\mathrm{r}}{\mathrm{r}}=\operatorname{cosec} \frac{\pi}{\mathrm{n}}$
(A) $\mathrm{n}=4, \mathrm{R}+\mathrm{r}=\sqrt{2} \mathrm{r}$
(B) $\mathrm{n}=5, \frac{\mathrm{R}+\mathrm{r}}{\mathrm{r}}=\operatorname{cosec} \frac{\pi}{5}<\operatorname{cosec} \frac{\pi}{6}$

$$
\mathrm{R}+\mathrm{r}<2 \mathrm{r} \Rightarrow \mathrm{r}>\mathrm{R}
$$

(C) $\mathrm{n}=8, \frac{\mathrm{R}+\mathrm{r}}{\mathrm{r}}=\operatorname{cosec} \frac{\pi}{8}>\operatorname{cosec} \frac{\pi}{4}$

$$
\mathrm{R}+\mathrm{r}>\sqrt{2} \mathrm{r}
$$

(D) $\mathrm{n}=12, \frac{\mathrm{R}+\mathrm{r}}{\mathrm{r}}=\operatorname{cosec} \frac{\pi}{12}=\sqrt{2}(\sqrt{3}+1)$

$$
\mathrm{R}+\mathrm{r}=\sqrt{2}(\sqrt{3}+1) \mathrm{r}
$$

$$
\sqrt{2}(\sqrt{3}+1) r>R
$$

4. Ans. (B)

Sol.

$$
\begin{aligned}
& (1,-2)=(\alpha,-\alpha-1) \\
& \Rightarrow \alpha=1
\end{aligned}
$$

one of the vertex is intersection of x-axis and
$x+y+1=0 \Rightarrow A(-1,0)$
Let vertex B be $(\alpha,-\alpha-1)$
Line $\mathrm{AC} \perp \mathrm{BH} \Rightarrow \alpha=1 \Rightarrow \mathrm{~B}(1,-2)$
Let vertex C be $(\beta, 0)$
Line $\mathrm{AH} \perp \mathrm{BC}$
$\mathrm{m}_{\mathrm{AH}} \cdot \mathrm{m}_{\mathrm{BC}}=-1$
$\frac{1}{2} \cdot \frac{2}{\beta-1}=-1 \Rightarrow \beta=0$
Centroid of $\triangle \mathrm{ABC}$ is $\left(0,-\frac{2}{3}\right)$

Now $G($ centroid) divides line joining circum centre (O) and ortho centre (H) in the ratio $1: 2$

$$
\begin{gathered}
\Rightarrow \begin{array}{l}
\underset{(\mathrm{h}, \mathrm{k})}{\mathrm{O}} \quad 1 \quad\left(0,-\frac{2}{3}\right)
\end{array} \quad \begin{array}{ll}
(1,1) \\
2 \mathrm{~h}+1=0 & 2 \mathrm{k}+1=-2 \\
\mathrm{O}=-\frac{1}{2} & \mathrm{k}=-\frac{3}{2}
\end{array} \\
\\
\end{gathered}
$$

\Rightarrow circum centre is $\left(-\frac{1}{2},-\frac{3}{2}\right)$
Equation of circum circle is (passing through $\mathrm{C}(0,0)$) is $x^{2}+y^{2}+x+3 y=0$
5. Ans. (D)

Sol. $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{\mathrm{n}-1}}$

$$
=2\left(1-\frac{1}{2^{\mathrm{n}}}\right)=2-\frac{1}{2^{\mathrm{n}-1}}
$$

Centre of C_{n} is $\left(2-\frac{1}{2^{\mathrm{n}-2}}, 0\right)$
and radius of C_{n} is $\frac{1}{2^{\mathrm{n}-1}}$
when $r=\frac{1025}{513}<2$
C_{n} will lie inside m
when $2-\frac{1}{2^{n-2}}+\frac{1}{2^{n-1}}<\frac{1025}{513}$
$\Rightarrow \mathrm{k}=10$
Also $\ell=5$
$3 \mathrm{k}+2 \ell=30+10=40$
6. Ans. (B)

Sol. Center of D_{n} is $\left(\mathrm{S}_{\mathrm{n}-1}, \mathrm{~S}_{\mathrm{n}-1}\right)$
$\mathrm{r}=\frac{1}{2^{\mathrm{n}-1}}$
D_{n} will lie inside
when $\sqrt{2}\left(\mathrm{~S}_{\mathrm{n}-1}\right)+\mathrm{a}_{\mathrm{n}}<\frac{2^{199}-1}{2^{198}} \sqrt{2}$
$\Rightarrow \frac{\sqrt{2}}{2^{\mathrm{n}-2}}>\frac{\sqrt{2}}{2^{198}}+\frac{1}{2^{\mathrm{n}-1}}$
$\Rightarrow \mathrm{n}=199$
7. Ans. (2)

Sol.

M-I
$\mathrm{OA}=\frac{\sqrt{5}}{2} \quad \mathrm{OC}=\frac{4}{\sqrt{5}}$

$$
\mathrm{CQ}=\mathrm{OC}=\frac{4}{\sqrt{5}} \quad \text { and } \mathrm{CA}=\frac{3}{2 \sqrt{5}}
$$

$\therefore \quad \mathrm{OQ}=\sqrt{\mathrm{OA}^{2}+\mathrm{AQ}^{2}}$

$$
\begin{aligned}
& \quad=\sqrt{\mathrm{OA}^{2}+\left(\mathrm{CQ}^{2}-\mathrm{CA}^{2}\right)} \\
& \Rightarrow \quad \sqrt{\frac{5}{4}+\frac{16}{5}-\frac{9}{20}}=\sqrt{4} \\
& \Rightarrow \quad 2=\mathrm{r}
\end{aligned}
$$

M-II

$P Q: h x+k y=r^{2}$
Given PQ $2 x+4 y=5$
$\Rightarrow \quad \frac{\mathrm{h}}{2}=\frac{\mathrm{k}}{4}=\frac{\mathrm{r}^{2}}{5} \Rightarrow \mathrm{~h}=\frac{2 \mathrm{r}^{2}}{5} \quad \mathrm{k}=\frac{4 \mathrm{r}^{2}}{5}$
$\therefore \quad \mathrm{C}=\left(\frac{\mathrm{r}^{2}}{5}, \frac{2 \mathrm{r}^{2}}{5}\right)$
$\therefore \quad$ C lies on $x+2 y=4$
$\Rightarrow \quad \frac{\mathrm{r}^{2}}{5}+2\left(\frac{2 \mathrm{r}^{2}}{5}\right)=4$
$\Rightarrow \quad r^{2}=4 \quad \Rightarrow r=2$
8. Ans. (B)

Sol.

$$
\mathrm{R} \equiv\left(-\frac{3}{5}, \frac{-3 \mathrm{~m}}{5}+1\right)
$$

So, $m\left(\frac{-\frac{3 m}{5}+3}{-\frac{3}{5}-3}\right)=-1$
$\Rightarrow \mathrm{m}^{2}-5 \mathrm{~m}+6=0$
$\Rightarrow \mathrm{m}=2,3$
9. Ans. (10.00)

Sol.

Distance of point A from given line $=\frac{5}{2}$
$\frac{\mathrm{CA}}{\mathrm{CB}}=\frac{2}{1}$
$\Rightarrow \quad \frac{\mathrm{AC}}{\mathrm{AB}}=\frac{2}{1}$
$\Rightarrow \quad \mathrm{AC}=2 \times 5=10$
Q. 10 Ans. (A)
Q. 11 Ans. (D)

Solution for Q. 10 and Q. 11

Sol.

$\mathrm{MC}_{1}+\mathrm{C}_{1} \mathrm{C}_{2}+\mathrm{C}_{2} \mathrm{~N}=2 \mathrm{r}$
$\Rightarrow 3+5+4=2 r \Rightarrow r=6 \Rightarrow$ Radius of $\mathrm{C}_{3}=6$

Suppose centre of C_{3} be
$\left(0+r_{4} \cos \theta, 0+r_{4} \sin \theta\right),\left\{\begin{array}{l}r_{4}=C_{1} C_{3}=3 \\ \tan \theta=\frac{4}{3}\end{array}\right\}$
$\mathrm{C}_{3}=\left(\frac{9}{5}, \frac{12}{5}\right)=(\mathrm{h}, \mathrm{k}) \Rightarrow 2 \mathrm{~h}+\mathrm{k}=6$
Equation of ZW and XY is $3 \mathrm{x}+4 \mathrm{y}-9=0$
(common chord of circle $\mathrm{C}_{1}=0$ and $\mathrm{C}_{2}=0$)

$\mathrm{ZW}=2 \sqrt{\mathrm{r}^{2}-\mathrm{p}^{2}}=\frac{24 \sqrt{6}}{5}$
(where $\mathrm{r}=6$ and $\mathrm{p}=\frac{6}{5}$)
$X Y=2 \sqrt{\mathrm{r}_{1}^{2}-\mathrm{p}_{1}^{2}}=\frac{24}{5}$
(where $\mathrm{r}_{1}=3$ and $\mathrm{p}_{1}=\frac{9}{5}$)
$\frac{\text { Length of } Z W}{\text { Length of } X Y}=\sqrt{6}$
Let length of perpendicular from M to ZW be $\lambda, \lambda=3+\frac{9}{5}=\frac{24}{5}$
$\frac{\text { Area of } \triangle \mathrm{MZN}}{\text { Area of } \triangle \mathrm{ZMW}}=\frac{\frac{1}{2}(\mathrm{MN}) \times \frac{1}{2}(\mathrm{ZW})}{\frac{1}{2} \times \mathrm{ZW} \times \lambda}$
$=\frac{1}{2} \frac{\mathrm{MN}}{\lambda}=\frac{5}{4}$
$C_{3}:\left(x-\frac{9}{5}\right)^{2}+\left(y-\frac{12}{5}\right)^{2}=6^{2}$
$C_{1}: x^{2}+y^{2}-9=0$
common tangent to C_{1} and C_{3} is common chord of C_{1} and C_{3} is $3 x+4 y+15=0$.

Now $3 x+4 y+15=0$ is tangent to parabola $x^{2}=8 \alpha y$.
$x^{2}=8 \alpha\left(\frac{-3 x-15}{4}\right) \Rightarrow 4 x^{2}+24 \alpha x+120 \alpha=0$
$\mathrm{D}=0 \Rightarrow \alpha=\frac{10}{3}$
12. Ans. (A)

Sol.

co-ordinates of E_{1} and E_{2} are obtained by solving $y=1$ and $x^{2}+y^{2}=4$
$\therefore \quad \mathrm{E}_{1}(-\sqrt{3}, 1)$ and $\mathrm{E}_{2}(\sqrt{3}, 1)$
co-ordinates of F_{1} and F_{2} are obtained by solving
$x=1$ and $x^{2}+y^{2}=4$
$\mathrm{F}_{1}(1, \sqrt{3})$ and $\mathrm{F}_{2}(1,-\sqrt{3})$
Tangent at $E_{1}: \quad-\sqrt{3} x+y=4$
Tangent at $E_{2}: \sqrt{3} x+y=4$
$\therefore \quad \mathrm{E}_{3}(0,4)$
Tangent at $\mathrm{F}_{1}: \mathrm{x}+\sqrt{3} y=4$
Tangent at $\mathrm{F}_{2}: \mathrm{x}-\sqrt{3} y=4$
$\therefore \quad F_{3}(4,0)$
and similarly $\mathrm{G}_{3}(2,2)$
$(0,4),(4,0)$ and $(2,2)$ lies on $x+y=4$
13. Ans. (D)

Sol.

Tangent at $\mathrm{P}(2 \cos \theta, 2 \sin \theta)$ is $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=2$
$\mathrm{M}(2 \sec \theta, 0)$ and $\mathrm{N}(0,2 \operatorname{cosec} \theta)$
Let midpoint be (h, k)

$$
\begin{aligned}
& \mathrm{h}=\sec \theta, \mathrm{k}=\operatorname{cosec} \theta \\
& \frac{1}{\mathrm{~h}^{2}}+\frac{1}{\mathrm{k}^{2}}=1 \\
& \frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}=1
\end{aligned}
$$

14. Ans. (B, D)

$\mathrm{AP}=\mathrm{AQ}=\mathrm{AM}$
Locus of M is a circle having PQ as its diameter

Hence, $E_{1}:(x-2)(x+2)+(y-7)(y+5)=0$ and $\mathrm{x} \neq \pm 2$

Locus of B (midpoint)
is a circle having RC as its diameter
$E_{2}: x(x-1)+(y-1)^{2}=0$
Now, after checking the options, we get (D)
The points $\left(\frac{4}{5}, \frac{7}{5}\right),(1,1),(-2,7)$ are collinear therefore (B) option is also correct.
15. Ans. (2)

Sol. We shall consider 3 cases.
Case I: When $\mathrm{p}=0$
(i.e. circle passes through origin)

Now, equation of circle becomes
$x^{2}+y^{2}+2 x+4 y=0$

Case II : When circle intersects x -axis at 2 distinct points and touches y-axis
Now $\left(\mathrm{g}^{2}-\mathrm{c}\right)>0 \quad \& \quad f^{2}-\mathrm{c}=0$
$\Rightarrow \quad 1-(-\mathrm{p})>0 \quad \& \quad 4-(-\mathrm{p})=0$
$\Rightarrow \quad \mathrm{p}=-4$
$\Rightarrow \quad \mathrm{p}>-1$
$\therefore \quad$ Not possible.
Case III : When circle intersects y-axis at 2 distinct points \& touches x-axis.
Now, $\mathrm{g}^{2}-\mathrm{c}=0 \quad \& \quad f^{2}-\mathrm{c}>0$
$\Rightarrow \quad 1-(-\mathrm{p})=0 \quad \& \quad 4-(-\mathrm{p})>0$
$\Rightarrow \quad \mathrm{p}=-1 \quad \Rightarrow \quad \mathrm{p}>-4$
$\therefore \quad \mathrm{p}=-1$ is possible.

\therefore Finally we conclude that $\mathrm{p}=0,-1$
\Rightarrow Two possible values of p.
16. Ans. (A, B, C)

Sol. On solving $x^{2}+y^{2}=3$ and
$x^{2}=2 y$ we get point $P(\sqrt{2}, 1)$
Equation of tangent at P
$\sqrt{2} \cdot x+y=3$
Let Q_{2} be $(0, \mathrm{k})$ and radius is $2 \sqrt{3}$
$\therefore\left|\frac{\sqrt{2}(0)+\mathrm{k}-3}{\sqrt{2+1}}\right|=2 \sqrt{3}$
$\therefore \mathrm{k}=9,-3$
$\mathrm{Q}_{2}(0,9)$ and $\mathrm{Q}_{3}(0,-3)$
hence $\mathrm{Q}_{2} \mathrm{Q}_{3}=12$
$\mathrm{R}_{2} \mathrm{R}_{3}$ is internal common tangent of circle C_{2} and C_{3}
$\therefore \mathrm{R}_{2} \mathrm{R}_{3}=\sqrt{\left(\mathrm{Q}_{2} \mathrm{Q}_{3}\right)^{2}-(2 \sqrt{3}+2 \sqrt{3})^{2}}$
$=\sqrt{12^{2}-48}=\sqrt{96}=4 \sqrt{6}$
Perpendicular distance of origin O from $\mathrm{R}_{2} \mathrm{R}_{3}$ is equal to radius of circle $C_{1}=\sqrt{3}$

Hence area of $\Delta \mathrm{OR}_{2} \mathrm{R}_{3}$
$=\frac{1}{2} \times\left(\mathrm{R}_{2} \mathrm{R}_{3}\right) \sqrt{3}=\frac{1}{2} \cdot 4 \sqrt{6} \cdot \sqrt{3}=6 \sqrt{2}$
Perpendicular Distance of P from $\mathrm{Q}_{2} \mathrm{Q}_{3}=\sqrt{2}$
\therefore Area of $\triangle \mathrm{PQ}_{2} \mathrm{Q}_{3}=\frac{1}{2} \times 12 \times \sqrt{2}=6 \sqrt{2}$
17. Ans. (A, C)

Sol.

Tangent at $\mathrm{P}: \mathrm{x} \cos \theta+\mathrm{y} \sin \theta=1$
Tangent at $\mathrm{S}: \mathrm{x}=1$
$\therefore \mathrm{By}(\mathrm{i}) \&(\mathrm{ii}): \mathrm{Q}\left(1, \frac{1-\cos \theta}{\sin \theta}\right)$
Line through Q parallel to RS :
$y=\frac{1-\cos \theta}{\sin \theta} \Rightarrow y=\tan \frac{\theta}{2}$
Normal at P :
$y=\frac{\sin \theta}{\cos \theta} x \Rightarrow y=\tan \theta \cdot x$
Point of intersection of equation (iii) and (iv),
$\mathrm{E}: \mathrm{h}=\frac{1-\tan ^{2} \frac{\theta}{2}}{2} ; \mathrm{k}=\tan \frac{\theta}{2}$
eliminating $\theta: \mathrm{h}=\frac{1-\mathrm{k}^{2}}{2} \Rightarrow \mathrm{y}^{2}=1-2 \mathrm{x}$
Options (A) and (C) satisfies the locus.
18. Ans. (B,C)

Sol. Let circle is $x^{2}+y^{2}+2 g x+2 f y+c=0$
Put $(0,1) \quad 1+2 f+\mathrm{c}=0$
orthogonal with
$x^{2}+y^{2}-2 x-15=0$
$2 \mathrm{~g}(-1)=\mathrm{c}-15 \Rightarrow \mathrm{c}=15-2 \mathrm{~g}$
orthogonal with
$x^{2}+y^{2}-1=0$
$\mathrm{c}=1$
$\Rightarrow \mathrm{g}=7 \& f=-1$
centre is $(-\mathrm{g},-f) \equiv(-7,1)$
radius $=\sqrt{\mathrm{g}^{2}+f^{2}-\mathrm{c}}=\sqrt{49+1-1}=7$

