AOD (MONOTONICITY)

1. Let $S = (0, 1) \cup (1, 2) \cup (3, 4)$ and $T = \{0, 1, 2, 3\}$. Then which of the following statements is (are) true ? [JEE(Advanced) 2023]

- (A) There are infinitely many functions from S to T
- (B) There are infinitely many strictly increasing functions from S to T
- (C) The number of continuous functions from S to T is at most 120
- (D) Every continuous function from S to T is differentiable

2. Let S be the set of all twice differentiable functions f from \mathbb{R} to \mathbb{R} such that $\frac{d^2f}{dx^2}(x) > 0$ for all

 $x \in (-1, 1)$. For $f \in S$, let X_f be the number of points $x \in (-1,1)$ for which f(x) = x. Then which of the following statements is(are) true? [JEE(Advanced) 2023]

- (A) There exists a function $f\in S$ such that $X_f\!=\!0$
- (B) For every function $f\in S$, we have $X_f\!\le\!2$

(A) f is decreasing in the interval (-2,-1)

- (C) There exists a function $f\in S$ such that X_f = 2
- (D) There does NOT exist any function f in S such that $X_f = 1$
- **3.** Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$$

Then which of the following statements is (are) **TRUE**?

[JEE(Advanced) 2021]

(C) f is onto

(D) Range of f is $\left[-\frac{3}{2}, 2\right]$

(B) f is increasing in the interval (1,2)

4. For a polynomial g(x) with real coefficient, let m_g denote the number of distinct real roots of g(x). Suppose S is the set of polynomials with real coefficients defined by

$$S = \{(x^{2} - 1)^{2} (a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3}) : a_{0}, a_{1}, a_{2}, a_{3} \in R\}$$

For a polynomial f, let f' and f'' denote its first and second order derivatives, respectively. Then the minimum possible value of $(m_{f'} + m_{f''})$, where $f \in S$, is _____ [JEE(Advanced) 2020] Let $f \in \mathbb{D}$ $\rightarrow (0, 1)$ be a continuous function. Then which of the following function(a) beg(here) the value

5. Let $f : \mathbb{R} \to (0,1)$ be a continuous function. Then, which of the following function(s) has(have) the value zero at some point in the interval (0, 1)? [JEE(Advanced) 2017]

(A)
$$e^{x} - \int_{0}^{x} f(t) \sin t dt$$
 (B) $x^{9} - f(x)$
(C) $f(x) + \int_{0}^{\frac{\pi}{2}} f(t) \sin t dt$ (D) $x - \int_{0}^{\frac{\pi}{2} - x} f(t) \cos t dt$

Answer Q.6, Q.7 and Q.8 by appropriately matching the information given in the three columns of the following table.

Let $f(x) = x + \log_e x - x \log_e x, x \in (0,\infty)$.

- * Column 1 contains information about zeros of f(x), f'(x) and f''(x).
- * Column 2 contains information about the limiting behavior of f(x), f'(x) and f''(x) at infinity.
- * Column 3 contains information about increasing/decreasing nature of f(x) and f'(x).

ALLEN® Column 1 Column 2 Column 3 f(x) = 0 for some $x \in (1,e^2)$ f is increasing in (0,1) $\lim_{x\to\infty} f(x) = 0$ (I) (i) (P) $\lim_{\mathbf{x}\to\infty}f(\mathbf{x})=-\infty$ (Q) f is decreasing in (e,e^2) (II) f'(x) = 0 for some $x \in (1,e)$ (ii) (III) f'(x) = 0 for some $x \in (0,1)$ (iii) $\lim_{x\to\infty} f'(x) = -\infty$ (R) f' is increasing in (0,1)(IV) f''(x) = 0 for some $x \in (1,e)$ $\lim_{x\to\infty} f''(x) = 0$ (S) f' is decreasing in (e,e²) (iv) Which of the following options is the only **CORRECT** combination ? [JEE(Advanced) 2017] (B) (I) (ii) (R) (C) (III) (iv) (P) (A) (IV) (i) (S)(D) (II) (iii) (S) Which of the following options is the only CORRECT combination ? [JEE(Advanced) 2017] (A) (III) (iii) (R) (B)(I)(i)(P)(C) (IV) (iv) (S)(D) (II) (ii) (Q) Which of the following options is the only INCORRECT combination? [JEE(Advanced) 2017] (A) (II) (iii) (P) (D) (III) (i) (R)(B) (II) (iv) (Q)(C) (I) (iii) (P)

If $f : \mathbb{R} \to \mathbb{R}$ is a twice differentiable function such that f''(x) > 0 for all $x \in \mathbb{R}$, and $f\left(\frac{1}{2}\right) = \frac{1}{2}$, f(1) = 1, 9.

[JEE(Advanced) 2017]

(A)
$$0 < f'(1) \le \frac{1}{2}$$

(B) $f'(1) \le 0$
(C) $f'(1) > 1$
(D) $\frac{1}{2} < f'(1) \le 1$

Let $f, g: [-1, 2] \rightarrow \mathbb{R}$ be continuous function which are twice differentiable on the interval (-1, 2). Let the 10. values of f and g at the points -1, 0 and 2 be as given in the following table :

	x = -1	x = 0	x = 2
$f(\mathbf{x})$	3	6	0
g(x)	0	1	-1

In each of the intervals (-1, 0) and (0, 2) the function (f - 3g)" never vanishes. Then the correct statement(s) is(are) [JEE(Advanced) 2015]

(A) f'(x) - 3g'(x) = 0 has exactly three solutions in $(-1, 0) \cup (0, 2)$

(B) f'(x) - 3g'(x) = 0 has exactly one solution in (-1, 0)

(C) f'(x) - 3g'(x) = 0 has exactly one solutions in (0, 2)

(D) f'(x) - 3g'(x) = 0 has exactly two solutions in (-1, 0) and exactly two solutions in (0, 2)

Let $a \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^5 - 5x + a$. Then 11. [JEE(Advanced) 2014]

(A) f(x) has three real roots if a > 4

- (B) f(x) has only one real roots if a > 4
- (C) f(x) has three real roots if a < -4
- (D) f(x) has three real roots if -4 < a < 4

6.

7.

8.

then

ALLEN®

SOLUTIONS

- 1. Ans. (A, C, D)
- **Sol.** $S = (0, 1) \cup (1, 2) \cup (3, 4)$

 $T = \{0, 1, 2, 3\}$

Number of functions :

Each element of S have 4 choice

Let n be the number of element in set S.

Number of function $= 4^n$

Here $n \rightarrow \infty$

 \Rightarrow Option (A) is correct.

Option (B) is incorrect (obvious)

For continuous function

Each interval will have 4 choices.

 \Rightarrow Number of continuous functions

$$= 4 \times 4 \times 4 = 64$$

 \Rightarrow Option (C) is correct.

(D) Every continuous function is piecewise constant functions

 \Rightarrow Differentiable.

Option (D) is correct.

2. Ans. (A, B, C)

Sol. S = Set of all twice differentiable functions

 $f: R \rightarrow R$

$$\frac{d^2f}{dx^2} > 0$$
 in (-1, 1)

Graph 'f' is Concave upward.

Number of solutions of $f(x) = x \rightarrow x_f$

 $\Rightarrow \text{ Graph of } y = f(x) \text{ can intersect graph of } y=x$ at atmost two points $\Rightarrow 0 \le x_f \le 2$

Sol.
$$f(x) = \frac{x^2 - 3x - 6}{x^2 + 2x + 4}$$
$$f'(x) = \frac{(x^2 + 2x + 4)(2x - 3) - (x^2 - 3x - 6)(2x + 2)}{(x^2 + 2x + 4)^2}$$
$$f'(x) = \frac{5x(x + 4)}{(x^2 + 2x + 4)^2}$$
$$f'(x) : \underbrace{+ - + -}_{-4} = \underbrace{- + - + -}_{-4}$$

$$f(-4) = \frac{11}{6}, \quad f(0) = -\frac{3}{2}, \quad \lim_{x \to \pm \infty} f(x) = 1$$

Range : $\left[-\frac{3}{2}, \frac{11}{6}\right]$, clearly f(x) is into

4. Ans. (5.00)

Sol. $f(x) = (x^2 - 1)^2 h(x);$ $h(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ Now, f(1) = f(-1) = 0 $\Rightarrow f'(\alpha) = 0$, $\alpha \in (-1, 1)$ [Rolle's Theorem] Also, $f'(1) = f'(-1) = 0 \Rightarrow f'(x) = 0$ has at least 3 root, -1, α , 1 with $-1 < \alpha < 1$ $\Rightarrow f''(x) = 0$ will have at least 2 root, say β , γ such that $-1 < \beta < \alpha < \gamma < 1$ [Rolle's Theorem] So, min(m_{f''}) = 2 and we find (m_{f'} + m_{f''}) = 5 for $f(x) = (x^2 - 1)^2 h(x)$

6. 7.

8.

Ans. (B, D)
For option (A),
Let
$$g(x) = e^x - \int_0^x f(t) \sin t dt$$

 $\therefore g'(x) = e^x - (f(x).\sin x) > 0 \forall x \in (0,1)$
 $\Rightarrow g(x)$ is strictly increasing function.
Also, $g(0) = 1$
 $\Rightarrow g(x) > 1 \forall x \in (0,1)$
 \therefore option (A) is not possible.
For option (B), let
 $k(x) = x^9 - f(x)$
Now, $k(0) = -f(0) < 0$ (As $f \in (0,1)$)
Also, $k(1) = 1 - f(1) > 0$ (As $f \in (0,1)$)
 $\Rightarrow k(0). k(1) < 0$
So, option(B) is correct.
For option (C), let
 $T(x) = f(x) + \int_0^{\frac{\pi}{2}} f(t).\sin t dt$
 $\Rightarrow T(x) > 0 \forall x \in (0,1)$ (As $f \in (0,1)$)
so, option(C) is not possible.
For option (D),
Let $M(x) = x - \int_0^{\frac{\pi}{2}-x} f(t) \cos t dt$
 $\therefore M(0) = 0 - \int_0^{\frac{\pi}{2}} f(t).\cos t dt < 0$
Also, $M(1) = 1 - \int_0^{\frac{\pi}{2}-1} f(t).\cos t dt > 0$
 $\Rightarrow M(0). M(1) < 0$

 \therefore option (D) is correct.

6. Ans. (D)
7. Ans. (D)
8. Ans. (D)
Sol. 6 to 8

$$f(x) = x + \ln x - x \ln x, x > 0$$

$$f'(x) = \int f(x) + \frac{1}{x} - \ln x + \int f(x) = \frac{1}{x^2} - \frac{1}{x} = \frac{-(x+1)}{x^2}$$
(1) $f(1) f(e) < 0$ so true
(II) $f(1) f(e) < 0$ so true
(III) Graph of $f'(x)$ so (III) is false
(IV) Is false
As $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x \left[1 + \frac{\ln x}{x} - \ln x \right] = -\infty$

$$\int \frac{1}{1} + \frac{\ln x}{x} - \ln x = -\infty$$
(P) $f'(x) = 0$ so (iv) is true

$$\lim_{x \to \infty} f''(x) = 0$$
 so (iv) is true.
(P) $f'(x)$ is positive in (0,1) so true
(Q) $f'(x) < 0$ for in (e,e^2) so true
As $f'(x) < 0 \forall x > 0$ therefor R is false, S is true
Alternate :
 $f(x) = x + \ln x - x \ln x$
 $f'(x) = -\frac{1}{x^2} - \frac{1}{x} < 0 \forall x > 0$
 $\Rightarrow f(x)$ concave down
 $f(x)$

$$\int \frac{1}{1} + \frac{1}{x^0} + \frac{e^2}{x} x$$

5.

Sol.

Ans. (C) 9. Using LMVT on f(x) for $x \in \left\lfloor \frac{1}{2}, 1 \right\rfloor$ Sol. $\frac{f(1)-f\left(\frac{1}{2}\right)}{1-\frac{1}{2}} = f'(c), \text{ where } c \in \left(\frac{1}{2}, 1\right)$ $\frac{1-\frac{1}{2}}{1} = f'(\mathbf{c}) \Longrightarrow f'(\mathbf{c}) = 1, \text{ where } \mathbf{c} \in \left(\frac{1}{2}, 1\right)$ 2 ÷ f'(x) is an increasing function $\forall x \in \mathbb{R}$ *.*.. f'(1) > 110. Ans. (B, C) **Sol.** Let F(x) = f(x) - 3g(x) \therefore F(-1) = 3; F(0) = 3 & F(2) = 3 \therefore F'(x) will vanish at least twice in $(-1,0) \cup (0,2)$ ∴ F''(x) > 0 or < 0 \forall x ∈ (-1,0) \cup (0,2) So there will be exactly 9 solution in (-1,0) and one in (0,2)Ans. (B, D) 11. Sol. $f(x) = x^5 - 5x + a$ $\therefore a = 5x - x^5$ \therefore f(x) has only one real root if a > 4 or a < -4f(x) has three real roots

if -4 < a < 4