AOD (MONOTONICITY)

1. Let $S=(0,1) \cup(1,2) \cup(3,4)$ and $T=\{0,1,2,3\}$. Then which of the following statements is (are) true ?
[JEE(Advanced) 2023]
(A) There are infinitely many functions from S to T
(B) There are infinitely many strictly increasing functions from S to T
(C) The number of continuous functions from S to T is at most 120
(D) Every continuous function from S to T is differentiable
2. Let S be the set of all twice differentiable functions f from \mathbb{R} to \mathbb{R} such that $\frac{d^{2} f}{d x^{2}}(x)>0$ for all $x \in(-1,1)$. For $f \in S$, let X_{f} be the number of points $x \in(-1,1)$ for which $f(x)=x$. Then which of the following statements is(are) true?
[JEE(Advanced) 2023]
(A) There exists a function $f \in S$ such that $X_{f}=0$
(B) For every function $f \in S$, we have $X_{f} \leq 2$
(C) There exists a function $f \in S$ such that $X_{f}=2$
(D) There does NOT exist any function f in S such that $X_{f}=1$
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$f(\mathrm{x})=\frac{\mathrm{x}^{2}-3 \mathrm{x}-6}{\mathrm{x}^{2}+2 \mathrm{x}+4}$.
Then which of the following statements is (are) TRUE ?
[JEE(Advanced) 2021]
(A) f is decreasing in the interval $(-2,-1)$
(B) f is increasing in the interval $(1,2)$
(C) f is onto
(D) Range of f is $\left[-\frac{3}{2}, 2\right]$
4. For a polynomial $g(x)$ with real coefficient, let m_{g} denote the number of distinct real roots of $g(x)$. Suppose S is the set of polynomials with real coefficients defined by
$S=\left\{\left(x^{2}-1\right)^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right): a_{0}, a_{1}, a_{2}, a_{3} \in R\right\}$.
For a polynomial f, let f^{\prime} and $f^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of $\left(\mathrm{m}_{f^{\prime}}+\mathrm{m}_{f}\right.$ " $)$, where $\mathrm{f} \in \mathrm{S}$, is \qquad [JEE(Advanced) 2020]
5. Let $f: \mathbb{R} \rightarrow(0,1)$ be a continuous function. Then, which of the following function(s) has(have) the value zero at some point in the interval $(0,1)$?
[JEE(Advanced) 2017]
(A) $\mathrm{e}^{\mathrm{x}}-\int_{0}^{\mathrm{x}} f(\mathrm{t}) \sin \mathrm{tdt}$
(B) $\mathrm{x}^{9}-f(\mathrm{x})$
(C) $f(\mathrm{x})+\int_{0}^{\frac{\pi}{2}} f(\mathrm{t}) \sin \mathrm{tdt}$
(D) $\mathrm{x}-\int_{0}^{\frac{\pi}{2}-\mathrm{x}} f(\mathrm{t}) \cos \mathrm{tdt}$

Answer Q.6, Q. 7 and Q. 8 by appropriately matching the information given in the three columns of the following table.

Let $f(\mathrm{x})=\mathrm{x}+\log _{\mathrm{e}} \mathrm{x}-\mathrm{x} \log _{\mathrm{e}} \mathrm{x}, \mathrm{x} \in(0, \infty)$.

* Column 1 contains information about zeros of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
* Column 2 contains information about the limiting behavior of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ at infinity.
* Column 3 contains information about increasing/decreasing nature of $f(x)$ and $f^{\prime}(x)$.

Column 1

(I) $f(\mathrm{x})=0$ for some $\mathrm{x} \in\left(1, \mathrm{e}^{2}\right)$
(II) $f^{\prime}(\mathrm{x})=0$ for some $\mathrm{x} \in(1, \mathrm{e})$
(III) $f^{\prime}(\mathrm{x})=0$ for some $\mathrm{x} \in(0,1)$
(IV) $f^{\prime \prime}(\mathrm{x})=0$ for some $\mathrm{x} \in(1, \mathrm{e})$

Column 2

Column 3

$\begin{array}{ll}\text { (i) } \lim _{\mathrm{x} \rightarrow \infty} f(\mathrm{x})=0 & \text { (P) } f \text { is increasing in }(0,1)\end{array}$
(ii) $\lim _{\mathrm{x} \rightarrow \infty} f(\mathrm{x})=-\infty$
(Q) f is decreasing in $\left(\mathrm{e}, \mathrm{e}^{2}\right)$
(iii) $\lim _{x \rightarrow \infty} f^{\prime}(x)=-\infty$
(R) f^{\prime} is increasing in $(0,1)$
(S) f^{\prime} is decreasing in $\left(\mathrm{e}, \mathrm{e}^{2}\right)$
6. Which of the following options is the only CORRECT combination?
[JEE(Advanced) 2017]
(A) (IV) (i) (S)
(B) (I) (ii) (R)
(C) (III) (iv) (P)
(D) (II) (iii) (S)
7. Which of the following options is the only CORRECT combination?
[JEE(Advanced) 2017]
(A) (III) (iii) (R)
(B) (I) (i) (P)
(C) (IV) (iv) (S)
(D) (II) (ii) (Q)
8. Which of the following options is the only INCORRECT combination ?
[JEE(Advanced) 2017]
(A) (II) (iii) (P)
(B) (II) (iv) (Q)
(C) (I) (iii) (P)
(D) (III) (i) (R)
9. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a twice differentiable function such that $f^{\prime \prime}(\mathrm{x})>0$ for all $\mathrm{x} \in \mathbb{R}$, and $f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=1$, then
[JEE(Advanced) 2017]
(A) $0<f^{\prime}(1) \leq \frac{1}{2}$
(B) $f^{\prime}(1) \leq 0$
(C) $f^{\prime}(1)>1$
(D) $\frac{1}{2}<f^{\prime}(1) \leq 1$
10. Let $f, \mathrm{~g}:[-1,2] \rightarrow \mathbb{R}$ be continuous function which are twice differentiable on the interval $(-1,2)$. Let the values of f and g at the points $-1,0$ and 2 be as given in the following table :

	$\mathrm{x}=-1$	$\mathrm{x}=0$	$\mathrm{x}=2$
$f(\mathrm{x})$	3	6	0
$\mathrm{~g}(\mathrm{x})$	0	1	-1

In each of the intervals $(-1,0)$ and $(0,2)$ the function $(f-3 g)$ " never vanishes. Then the correct statement(s) is(are)
[JEE(Advanced) 2015]
(A) $f^{\prime}(\mathrm{x})-3 \mathrm{~g}^{\prime}(\mathrm{x})=0$ has exactly three solutions in $(-1,0) \cup(0,2)$
(B) $f^{\prime}(\mathrm{x})-3 \mathrm{~g}^{\prime}(\mathrm{x})=0$ has exactly one solution in $(-1,0)$
(C) $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solutions in $(0,2)$
(D) $f^{\prime}(\mathrm{x})-3 \mathrm{~g}^{\prime}(\mathrm{x})=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$
11. Let $\mathrm{a} \in \mathbb{R}$ and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(\mathrm{x})=\mathrm{x}^{5}-5 \mathrm{x}+\mathrm{a}$. Then
[JEE(Advanced) 2014]
(A) $f(\mathrm{x})$ has three real roots if $\mathrm{a}>4$
(B) $f(\mathrm{x})$ has only one real roots if $\mathrm{a}>4$
(C) $f(\mathrm{x})$ has three real roots if $\mathrm{a}<-4$
(D) $f(\mathrm{x})$ has three real roots if $-4<\mathrm{a}<4$

SOLUTIONS

1. Ans. (A, C, D)

Sol. $\quad \mathrm{S}=(0,1) \cup(1,2) \cup(3,4)$
$\mathrm{T}=\{0,1,2,3\}$
Number of functions :
Each element of S have 4 choice
Let n be the number of element in set S .
Number of function $=4^{n}$
Here $\mathrm{n} \rightarrow \infty$
\Rightarrow Option (A) is correct.
Option (B) is incorrect (obvious)
(C)

For continuous function
Each interval will have 4 choices.
\Rightarrow Number of continuous functions
$=4 \times 4 \times 4=64$
\Rightarrow Option (C) is correct.
(D) Every continuous function is piecewise constant functions
\Rightarrow Differentiable.
Option (D) is correct.
2. Ans. (A, B, C)

Sol. $\quad \mathrm{S}=$ Set of all twice differentiable functions
$f: R \rightarrow R$
$\frac{d^{2} f}{d x^{2}}>0$ in $(-1,1)$
Graph ' f ' is Concave upward.
Number of solutions of $f(x)=x \rightarrow x_{f}$
(1)

(2)

(3)

\Rightarrow Graph of $y=f(x)$ can intersect graph of $y=x$ at atmost two points $\Rightarrow 0 \leq x_{f} \leq 2$
3. Ans. (A, B)

Sol. $f(x)=\frac{x^{2}-3 x-6}{x^{2}+2 x+4}$
$f^{\prime}(x)=\frac{\left(x^{2}+2 x+4\right)(2 x-3)-\left(x^{2}-3 x-6\right)(2 x+2)}{\left(x^{2}+2 x+4\right)^{2}}$
$f^{\prime}(x)=\frac{5 x(x+4)}{\left(x^{2}+2 x+4\right)^{2}}$
$\mathrm{f}^{\prime}(\mathrm{x})$:

$f(-4)=\frac{11}{6}, \quad f(0)=-\frac{3}{2}, \quad \lim _{\mathrm{x} \rightarrow \pm \infty} \mathrm{f}(\mathrm{x})=1$
Range : $\left[-\frac{3}{2}, \frac{11}{6}\right]$, clearly $f(x)$ is into
4. Ans. (5.00)

Sol. $f(\mathrm{x})=\left(\mathrm{x}^{2}-1\right)^{2} \mathrm{~h}(\mathrm{x})$;
$h(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$
Now, $f(1)=f(-1)=0$
$\Rightarrow f^{\prime}(\alpha)=0, \alpha \in(-1,1)$ [Rolle's Theorem]
Also, $f^{\prime}(1)=f^{\prime}(-1)=0 \Rightarrow f^{\prime}(\mathrm{x})=0$ has at least 3 root, $-1, \alpha, 1$ with $-1<\alpha<1$
$\Rightarrow f^{\prime \prime}(\mathrm{x})=0$ will have at least 2 root, say β, γ such that
$-1<\beta<\alpha<\gamma<1 \quad$ [Rolle's Theorem]
So, $\min \left(\mathrm{m}_{f^{\prime \prime}}\right)=2$ and
we find $\left(\mathrm{m}_{f^{\prime}}+\mathrm{m}_{f^{\prime \prime}}\right)=5$ for $f(\mathrm{x})=\left(\mathrm{x}^{2}-1\right)^{2} \mathrm{~h}(\mathrm{x})$

5. Ans. (B, D)

Sol. For option (A),
Let $g(x)=e^{x}-\int_{0}^{x} f(t) \sin t d t$
$\therefore \mathrm{g}^{\prime}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}-(f(\mathrm{x}) \cdot \sin \mathrm{x})>0 \forall \mathrm{x} \in(0,1)$
$\Rightarrow g(x)$ is strictly increasing function.
Also, $g(0)=1$
$\Rightarrow \mathrm{g}(\mathrm{x})>1 \forall \mathrm{x} \in(0,1)$
\therefore option (A) is not possible.
For option (B), let
$\mathrm{k}(\mathrm{x})=\mathrm{x}^{9}-f(\mathrm{x})$
Now, $\mathrm{k}(0)=-f(0)<0($ As $f \in(0,1))$
Also, $\mathrm{k}(1)=1-f(1)>0($ As $f \in(0,1))$
$\Rightarrow \mathrm{k}(0) . \mathrm{k}(1)<0$
So, option(B) is correct.
For option (C), let
$T(x)=f(x)+\int_{0}^{\frac{\pi}{2}} f(t) \cdot \sin t d t$
$\Rightarrow \mathrm{T}(\mathrm{x})>0 \forall \mathrm{x} \in(0,1)($ As $f \in(0,1))$
so, option(C) is not possible.
For option (D),
Let $M(x)=x-\int_{0}^{\frac{\pi}{2}-x} f(t) \cos t d t$
$\therefore \mathrm{M}(0)=0-\int_{0}^{\pi / 2} f(\mathrm{t}) \cdot \cos \mathrm{t} \mathrm{dt}<0$

Also, $\mathrm{M}(1)=1-\int_{0}^{\frac{\pi}{2}-1} f(\mathrm{t}) \cdot \cos \mathrm{tdt}>0$
$\Rightarrow \mathrm{M}(0) . \mathrm{M}(1)<0$
\therefore option (D) is correct.
6. Ans. (D)
7. Ans. (D)
8. Ans. (D)

Sol. 6 to 8
$f(\mathrm{x})=\mathrm{x}+\ell \mathrm{n} \mathrm{x}-\mathrm{x} \ell \mathrm{n} \mathrm{x}, \mathrm{x}>0$
$f^{\prime}(\mathrm{x})=\not \wedge+\frac{1}{\mathrm{x}}-\ell \mathrm{nx} \not-1$
$f^{\prime \prime}(\mathrm{x})=-\frac{1}{\mathrm{x}^{2}}-\frac{1}{\mathrm{x}}=\frac{-(\mathrm{x}+1)}{\mathrm{x}^{2}}$
(I) $\quad f(1) f\left(\mathrm{e}^{2}\right)<0 \quad$ so true
(II) $\quad f^{\prime}(1) f^{\prime}(\mathrm{e})<0 \quad$ so true
(III) Graph of $f^{\prime}(\mathrm{x}) \quad$ so (III) is false
(IV) Is false

As $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} x\left[1+\frac{\ell n \mathrm{n}}{\mathrm{x}}-\ell \mathrm{n} \mathrm{x}\right]=-\infty$

\therefore (i) is false (ii) is true
$\lim _{x \rightarrow \infty} f^{\prime}(x)=-\infty$ so (iii) is true
$\lim _{x \rightarrow \infty} f^{\prime \prime}(x)=0$ so (iv) is true.
(P) $\quad f^{\prime}(\mathrm{x})$ is positive in $(0,1)$ so true
(Q) $\quad f^{\prime}(x)<0$ for in $\left(\mathrm{e}, \mathrm{e}^{2}\right)$ so true

As $f^{\prime}(\mathrm{x})<0 \forall \mathrm{x}>0$ therefor R is false, S is true.
Alternate :
$f(\mathrm{x})=\mathrm{x}+\ell \mathrm{nx}-\mathrm{x} \ell \mathrm{n} \mathrm{x}$
$f^{\prime}(\mathrm{x})=\frac{1}{\mathrm{x}}-\ln \mathrm{x}=0=$ at $\mathrm{x}=\mathrm{x}_{0}$ where
$\mathrm{x}_{0} \in(1, \mathrm{e})$
$f^{\prime \prime}(\mathrm{x})=-\frac{1}{\mathrm{x}^{2}}-\frac{1}{\mathrm{x}}<0 \forall \mathrm{x}>0$
$\Rightarrow f(\mathrm{x})$ concave down

9. Ans. (C)

Sol. Using LMVT on $f(\mathrm{x})$ for $\mathrm{x} \in\left[\frac{1}{2}, 1\right]$
$\frac{f(1)-f\left(\frac{1}{2}\right)}{1-\frac{1}{2}}=f^{\prime}(\mathrm{c})$, where $\mathrm{c} \in\left(\frac{1}{2}, 1\right)$
$\frac{1-\frac{1}{2}}{\frac{1}{2}}=f^{\prime}(\mathrm{c}) \Rightarrow f^{\prime}(\mathrm{c})=1$, where $\mathrm{c} \in\left(\frac{1}{2}, 1\right)$
$\because \quad f^{\prime}(\mathrm{x})$ is an increasing function $\forall \mathrm{x} \in \mathrm{R}$
$\therefore \quad f^{\prime}(1)>1$
10. Ans. (B, C)

Sol. $\quad \operatorname{Let} \mathrm{F}(\mathrm{x})=f(\mathrm{x})-3 \mathrm{~g}(\mathrm{x})$
$\therefore \mathrm{F}(-1)=3 ; \mathrm{F}(0)=3 \& \mathrm{~F}(2)=3$
$\therefore \mathrm{F}^{\prime}(\mathrm{x})$ will vanish at least twice in $(-1,0) \cup(0,2)$
$\because \mathrm{F}^{\prime \prime}(\mathrm{x})>0$ or $<0 \forall \mathrm{x} \in(-1,0) \cup(0,2)$
So there will be exactly 9 solution in $(-1,0)$ and one in $(0,2)$
11. Ans. (B, D)

Sol.

$f(x)=x^{5}-5 x+a$
$\therefore a=5 x-x^{5}$
$\therefore \mathrm{f}(\mathrm{x})$ has only
one real root if
$\mathrm{a}>4$ or $\mathrm{a}<-4$
$\mathrm{f}(\mathrm{x})$ has three real roots
if $-4<$ a <4

