ALLEN®

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

PHYSICAL CHEMISTRY

THERMODYNAMICS-II

1. In a one-litre flask, 6 moles of A undergoes the reaction A (g) \rightleftharpoons P (g). The progress of product formation at two temperatures (in Kelvin), T₁ and T₂, is shown in the figure: [JEE(Advanced) 2023]

If $T_1 = 2T_2$ and $(\Delta G_2^{\Theta} - \Delta G_1^{\Theta}) = RT_2 \ln x$, then the value of x is _____.

 $[\Delta G_1^{\Theta} \text{ and } \Delta G_2^{\Theta}]$ are standard Gibb's free energy change for the reaction at temperatures T_1 and T_2 , respectively.]

"Paragraph I" for Question No. 2

The entropy versus temperature plot for phases α and β at 1 bar pressure is given.

S_T and S₀ are entropies of the phases at temperatures T and 0 K, respectively.

The transition temperature for α to β phase change is 600 K and $C_{P,\beta} - C_{P,\alpha} = 1 \text{ J mol}^{-1} \text{ K}^{-1}$. Assume $(C_{P,\beta} - C_{P,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{P,\alpha}$ and $C_{P,\beta}$ are heat capacities of α and β phases, respectively. [JEE(Advanced) 2023]

2. The value of entropy change, $S_{\beta} - S_{\alpha}$ (in J mol⁻¹ K⁻¹), at 300 K is _____.

[Use : ln 2 = 0.69]

Given : $S_{\beta} - S_{\alpha} = 0$ at 0 K]

"Paragraph I" for Question No. 3

The entropy versus temperature plot for phases α and β 1 bar pressure is given. S_T and S₀ are entropies of the phases at temperatures T and 0 K, respectively

The transition temperature for α to β phase change is 600 K and $C_{P,\beta} - C_{P,\alpha} = 1J \text{ mol}^{-1} \text{ K}^{-1}$. Assume $(C_{P,\beta} - C_{P,\alpha})$ is independent of temperature in the range of 200 to 700 K. $C_{P,\alpha}$ and $C_{P,\beta}$ are heat capacities of α and β phases, respectively. [JEE(Advanced) 2023]

The value of enthalpy change, $H_{\beta} - H_{\alpha}$ (in J mol⁻¹), at 300 K is _____. 3.

Question Stem for Question Nos. 4 and 5

For the reaction $\mathbf{X}(s) \rightleftharpoons \mathbf{Y}(s) + \mathbf{Z}(g)$, the plot of $\ln \frac{p_z}{p^{\Theta}}$ versus $\frac{10^4}{T}$ is given below (in solid line),

where p_z is the pressure (in bar) of the gas **Z** at temperature *T* and $P^{\Theta} = 1$ bar.

(Given, $\frac{d(\ln K)}{d(\frac{1}{T})} = -\frac{\Delta H^{\Theta}}{R}$, where the equilibrium constant, $K = \frac{p_z}{p^{\Theta}}$ and the gas constant,

$$R = 8.314 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$$
)

[JEE(Advanced) 2021]

- The value of standard enthalpy, ΔH^{Φ} (in kJ mol⁻¹) for the reaction is_____. 4.
- The value of ΔS^{\oplus} (in J K⁻¹ mol⁻¹) for the given reaction, at 1000 K is_____. 5.
- For a reaction, $A \rightleftharpoons P$, the plots of [A] and [P] with time at temperatures T_1 and T_2 are given below. 6.

[JEE(Advanced) 2018]

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

its equilibrium constant K in terms of change in entropy is described by [JEE(Advanced) 2017] (A) With increase in temperature, the value of K for exothermic reaction decreases because the entropy change of the system is positive (B) With increase in temperature, the value of K for endothermic reaction increases because unfavourable change in entropy of the surroundings decreases (C) With increase in temperature, the value of K for exothermic reaction decreases because favourable change in entropy of the surroundings decreases (D) With increase in temperature, the value of K for endothermic reaction increases because the entropy change of the system negative 8. Match the thermodynamic processes given under Column-I with the expressions given under Column-II. [JEE(Advanced) 2015] Column-I **Column-II** Freezing of water at 273 K and 1 atm (P) q = 0(A) Expansion of 1 mol of an ideal gas into a vacuum under (Q) w = 0(B) isolated conditions (C) Mixing of equal volumes of two ideal gases at constant (R) $\Delta S_{sys} < 0$ temeprature and pressure in an isolated container (D) Reversible heating of $H_2(g)$ at 1 atm from 300 K to 600 K (S) $\Delta U = 0$ followed by reversible cooling to 300 K at 1 atm (T) $\Delta G = 0$ 9. For the process [JEE(Advanced) 2014]

For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on

$H_2O(l) \rightarrow H_2O(g)$

at $T = 100^{\circ}C$ and 1 atmosphere pressure, the correct choice is

ALLEN®

7.

- (A) $\Delta S_{system} > 0$ and $\Delta S_{surroundings} > 0$ (B) $\Delta S_{system} > 0$ and $\Delta S_{surroundings} < 0$
- $(C) \Delta S_{system} < 0 \text{ and } \Delta S_{surroundings} > 0$ (D) $\Delta S_{system} < 0 \text{ and } \Delta S_{surroundings} < 0$

SOLUTIONS

	SOLUTIONS		
1.	Ans. (8)		
Sol.	At T_1 K :	$A(g) \Longrightarrow P(g)$	
	t = 0	6	
	$t = \infty$	6-x $x = 4$ (from plot)	
	$\Rightarrow \operatorname{At} \operatorname{T}_1 \operatorname{K} \colon \operatorname{K}_{\operatorname{P}_1} = \frac{4}{2} = 2$		
	At T_2 K:	$A(g) \rightleftharpoons P(g)$	
	t = 0	6	
	$t = \infty$	6-y $y = 2$ (from plot)	
	$\Rightarrow \operatorname{At} \operatorname{T}_2 \operatorname{K} \colon \operatorname{K}_{\operatorname{P}_2} = \frac{2}{4} = \frac{1}{2}$		
	Now, $\Delta G_2^\circ = -RT_2 \ln K_{P_2} = -RT_2 \ln \frac{1}{2}$		
	$\Rightarrow \Delta G_2^\circ = RT_2 \ln 2$		
	$\Delta G_1^o = - RT_1 \ln K_1$	$P_1 = -RT_1 \ln 2 = -2RT_2 \ln 2$	
	Given : $\Delta G_2^{\circ} - \Delta G_1^{\circ} = RT_2 \ln 2 + 2RT_2 \ln 2 = 3RT_2 \ln 2 = RT_2 \ln x$		
	$\Rightarrow x = 2^3 = 8$		
2.	Ans. (0.30 to 0.32)		
Sol.	At 1 bar		
	$\alpha \longrightarrow \beta$	<00	
	$S^{o}_{\alpha(600)} = S^{o}_{\alpha(300)} + C_{P(\alpha)} \ell$		
	$S^{o}_{\beta(600)} = S^{o}_{\beta(300)} + C_{P(\beta)}\ell$	$n \frac{600}{300}$	
	$S^{o}_{\beta(600)} - S^{o}_{\alpha(600)} = S^{o}_{\beta(300)}$	$-S^{o}_{\alpha(300)} + (C_{P(\beta)} - C_{P(\alpha)}) \ \ell n 2$	
	$6-5=S^{o}_{\beta(300)}-S^{o}_{\alpha(300)}+$	$-1 \times \ell n 2$	
	$1 = S^{\rm o}_{\beta(300)} - S^{\rm o}_{\alpha(300)} + 0.6$	9	
	So $S^{o}_{\beta(300)} - S^{o}_{\alpha(300)} = 0.3$	1	

ALLEN[®] 3. Ans. (300.00)

Sol. As the phase transition temperature is 600 K

So at 600 K $\Delta G^{\circ}_{rxn} = 0$

So $\Delta H^{\circ}_{reaction (600)} = T \Delta S^{\circ}_{reaction (600)}$

 $\Delta H^{\circ}_{(600)} = 600 \times 1 = 600$ Joule/mole

So
$$\Delta H_{600} - \Delta H_{300} = \Delta C_P (T_2 - T_1)$$

 $\Delta H_{600} - \Delta H_{300} = 1 \times 300$

 $\Delta H_{300} = \Delta H_{600} - 300 = 600 - 300 = 300$ Joule/mole.

4. Ans. (166.28)

Sol.
$$\Delta G^{\circ} = -RT \ln\left(\frac{P}{l}\right) = \Delta H^{\circ} - T\Delta S^{\circ}$$

 $\ln\left(\frac{P}{l}\right) = -\frac{\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$
 $Slope = -\frac{\Delta H^{\circ}}{R} = 10^{4} \times \left(-\frac{4}{2}\right)$
 $\Rightarrow \Delta H^{\circ} = 2 \times 10^{4} \times R$
 $= 166.28 \text{ kJ/mole}$

5. Ans. (141.33 or 141.34)

Sol. From the plot when, $\frac{10^4}{T} = 10 \implies T = 1000 \text{ K}$

$$\ln\left(\frac{P_2}{1}\right) = -3$$

Substituting in equation :

$$\ln\left(\frac{P_2}{1}\right) = -\frac{\Delta H^o}{RT} + \frac{\Delta S^o}{R}$$

We get,

$$-3 = -\frac{2 \times 10^{4} \times R}{R \times 1000} + \frac{\Delta S^{\circ}}{R}$$
$$\Rightarrow \Delta S^{\circ} = 17R$$
$$\Rightarrow \Delta S^{\circ} = 17 \times 8.314 \text{ J/K-mol}$$
$$\Rightarrow \Delta S^{\circ} = 141.34 \text{ J/K-mol}$$

6.	Ans. (A, C)	
Sol.	$A \rightleftharpoons P$	
	given $T_2 > T_1$	
	$\frac{\ln K_1}{\ln K_2} > \frac{T_2}{T_1}$	
	$\Rightarrow T_1 \ln k_1 > T_2 \ln k_2$	
	$\Rightarrow -\Delta G^{\circ}_{1} > -\Delta G^{\circ}_{2}$	
	$\Rightarrow (-\Delta H^{\circ} + T_1 \Delta S^{\circ}) > (-\Delta H^{\circ} + T_2 \Delta S^{\circ})$	
	$\Rightarrow T_1 \Delta S^\circ > T_2 \Delta S^\circ$	
	$\Rightarrow \Delta S^{\circ} < 0$	
7.	Ans. (B, C)	

Sol. $\Delta S_{surr.} = \frac{-q_{process}}{T}$

If ΔH > 0 on T \uparrow K $_{eq}$ \uparrow , $\Delta S_{surr.}$ < 0 (Surrounding is unfavourable)

If $\Delta H < 0$ on T ^ Keq \downarrow , $\Delta S_{surr.} > 0$ (Surrounding is favourable)

Ans. (A) \rightarrow R, T ; (B) \rightarrow P, Q, S ; (C) \rightarrow P, Q, S ; (D) \rightarrow P, Q, S, T 8.

Sol. (A)
$$H_2O(1) \xrightarrow{1 \text{ atm}} H_2O(s)$$

 $q < 0$
 $w < 0$ (expansion)
 $\Delta S_{sys} < 0$
 $\Delta U < 0$
 $\Delta G = 0$ (At equilibrium)
(B) $q = 0$ (Isolated)
 $w = 0$ (Isolated)
 $\Delta S_{sys} > 0$ (Expansion)
 $\Delta U = q + w = 0$
 $\Delta G = nRT \ln \frac{V_1}{V_2} < 0$

JEE Advanced Chemistry 10 Years Topicwise Questions with Solutions

9. Ans. (B)

Sol. At 100°C & 1 atm vapourization of water is a reversible process, So

 $\Delta S_{Universe} = \Delta S_{system} + \Delta S_{surroundings} = 0$

 $\Rightarrow \Delta S_{system} = -\Delta S_{surrounding}$

During vapourization entropy of system increases

i.e., $\Delta S_{system} > 0$

i.e., $\Delta S_{surrounding} < 0$