THERMODYNAMICS-II

1. In a one-litre flask, 6 moles of A undergoes the reaction $A(g) \rightleftharpoons P(g)$. The progress of product formation at two temperatures (in Kelvin), T_{1} and T_{2}, is shown in the figure:
[JEE(Advanced) 2023]

If $T_{1}=2 T_{2}$ and $\left(\Delta G_{2}^{\Theta}-\Delta G_{1}^{\Theta}\right)=R T_{2} \ln x$, then the value of x is \qquad .
[ΔG_{1}^{Θ} and ΔG_{2}^{Θ} are standard Gibb's free energy change for the reaction at temperatures T_{1} and T_{2}, respectively.]

"Paragraph I" for Question No. 2

The entropy versus temperature plot for phases α and β at 1 bar pressure is given.
S_{T} and S_{0} are entropies of the phases at temperatures T and 0 K , respectively.

The transition temperature for α to β phase change is 600 K and $C_{P, \beta}-C_{P, \alpha}=1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Assume $\left(C_{P, \beta}-C_{P, \alpha}\right)$ is independent of temperature in the range of 200 to $700 \mathrm{~K} . \mathrm{C}_{\mathrm{P}, \alpha}$ and $\mathrm{C}_{\mathrm{P}, \beta}$ are heat capacities of α and β phases, respectively.
[JEE(Advanced) 2023]
2. The value of entropy change, $\mathrm{S}_{\beta}-\mathrm{S}_{\alpha}\left(\right.$ in $\left.\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$, at 300 K is \qquad .
[Use : $\ln 2=0.69$
Given : $\mathrm{S}_{\beta}-\mathrm{S}_{\alpha}=0$ at 0 K]

"Paragraph I" for Question No. 3

The entropy versus temperature plot for phases α and $\beta 1$ bar pressure is given. S_{T} and S_{0} are entropies of the phases at temperatures T and 0 K , respectively

The transition temperature for α to β phase change is 600 K and $C_{P, \beta}-C_{P, \alpha}=1 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$. Assume $\left(C_{P, \beta}-C_{P, \alpha}\right)$ is independent of temperature in the range of 200 to $700 \mathrm{~K} . \mathrm{C}_{\mathrm{P}, \alpha}$ and $\mathrm{C}_{\mathrm{P}, \beta}$ are heat capacities of α and β phases, respectively.
[JEE(Advanced) 2023]
3. The value of enthalpy change, $\mathrm{H}_{\beta}-\mathrm{H}_{\alpha}\left(\mathrm{in} \mathrm{J} \mathrm{mol}^{-1}\right)$, at 300 K is \qquad -

Question Stem for Question Nos. 4 and 5

For the reaction $\mathbf{X}(\mathrm{s}) \rightleftharpoons \mathbf{Y}(\mathrm{s})+\mathbf{Z}(\mathrm{g})$, the plot of $\ln \frac{\mathrm{p}_{\mathrm{z}}}{\mathrm{p}^{\ominus}}$ versus $\frac{10^{4}}{T}$ is given below (in solid line), where p_{z} is the pressure (in bar) of the gas \mathbf{Z} at temperature T and $\mathrm{P}^{\theta}=1$ bar.

(Given, $\frac{\mathrm{d}(\ln \mathrm{K})}{\mathrm{d}\left(\frac{1}{T}\right)}=-\frac{\Delta H^{\ominus}}{\mathrm{R}}$, where the equilibrium constant, $\mathrm{K}=\frac{\mathrm{P}_{\mathrm{z}}}{\mathrm{p}^{\ominus}}$ and the gas constant,
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)
[JEE(Advanced) 2021]
4. The value of standard enthalpy, $\Delta \mathrm{H}^{\ominus}$ (in $\mathrm{kJ} \mathrm{mol}^{-1}$) for the reaction is \qquad .
5. The value of $\Delta \mathrm{S}^{\ominus}$ (in $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) for the given reaction, at 1000 K is \qquad .
6. For a reaction, $A \rightleftharpoons P$, the plots of $[A]$ and $[P]$ with time at temperatures T_{1} and T_{2} are given below.

If $\mathrm{T}_{2}>\mathrm{T}_{1}$, the correct statement(s) is (are)
[JEE(Advanced) 2018]
(Assume $\Delta \mathrm{H}^{\theta}$ and $\Delta \mathrm{S}^{\theta}$ are independent of temperature and ratio of $\ln \mathrm{K}$ at T_{1} to $\ln \mathrm{K}$ at T_{2} is greater than $\mathrm{T}_{2} / \mathrm{T}_{1}$. Here H, S, G and K are enthalpy, entropy, Gibbs energy and equilibrium constant, respectively.)
(A) $\Delta \mathrm{H}^{\theta}<0, \Delta \mathrm{~S}^{\theta}<0$
(B) $\Delta \mathrm{G}^{\theta}<0, \Delta \mathrm{H}^{\theta}>0$
(C) $\Delta G^{\theta}<0, \Delta S^{\theta}<0$
(D) $\Delta \mathrm{G}^{\theta}<0, \Delta \mathrm{~S}^{\theta}>0$

ALLEM ${ }^{\circledR}$

7. For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on its equilibrium constant K in terms of change in entropy is described by
[JEE(Advanced) 2017]
(A) With increase in temperature, the value of K for exothermic reaction decreases because the entropy change of the system is positive
(B) With increase in temperature, the value of K for endothermic reaction increases because unfavourable change in entropy of the surroundings decreases
(C) With increase in temperature, the value of K for exothermic reaction decreases because favourable change in entropy of the surroundings decreases
(D) With increase in temperature, the value of K for endothermic reaction increases because the entropy change of the system negative
8. Match the thermodynamic processes given under Column-I with the expressions given under Column-II.
[JEE(Advanced) 2015]

Column-I

(A) Freezing of water at 273 K and 1 atm
(B) Expansion of 1 mol of an ideal gas into a vacuum under isolated conditions
(C) Mixing of equal volumes of two ideal gases at constant temeprature and pressure in an isolated container
(D) Reversible heating of $\mathrm{H}_{2}(\mathrm{~g})$ at 1 atm from 300 K to 600 K followed by reversible cooling to 300 K at 1 atm
(T) $\Delta \mathrm{G}=0$
9. For the process
[JEE(Advanced) 2014]

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

at $\mathrm{T}=100^{\circ} \mathrm{C}$ and 1 atmosphere pressure, the correct choice is
(A) $\Delta \mathrm{S}_{\text {system }}>0$ and $\Delta \mathrm{S}_{\text {surroundings }}>0$
(B) $\Delta \mathrm{S}_{\text {system }}>0$ and $\Delta \mathrm{S}_{\text {surroundings }}<0$
(C) $\Delta \mathrm{S}_{\text {system }}<0$ and $\Delta \mathrm{S}_{\text {surroundings }}>0$
(D) $\Delta \mathrm{S}_{\text {system }}<0$ and $\Delta \mathrm{S}_{\text {surroundings }}<0$

SOLUTIONS

1. Ans. (8)

Sol. At $\mathrm{T}_{1} \mathrm{~K}$:

$$
\mathrm{A}(\mathrm{~g}) \rightleftharpoons \mathrm{P}(\mathrm{~g})
$$

$$
\begin{array}{lc}
\mathrm{t}=0 & 6 \\
\mathrm{t}=\infty & 6-\mathrm{x}
\end{array} \quad \mathrm{x}=4 \text { (from plot) }
$$

Now, $\Delta \mathrm{G}_{2}^{\mathrm{o}}=-\mathrm{RT}_{2} \ln \mathrm{~K}_{\mathrm{P}_{2}}=-\mathrm{RT}_{2} \ln \frac{1}{2}$

$$
\begin{aligned}
& \Rightarrow \Delta \mathrm{G}_{2}^{\mathrm{o}}=\mathrm{RT}_{2} \ln 2 \\
& \Delta \mathrm{G}_{1}^{\mathrm{o}}=-\mathrm{RT}_{1} \ln \mathrm{~K}_{\mathrm{P}_{1}}=-\mathrm{RT}_{1} \ln 2=-2 \mathrm{RT}_{2} \ln 2
\end{aligned}
$$

Given : $\Delta \mathrm{G}_{2}^{0}-\Delta \mathrm{G}_{1}^{0}=\mathrm{RT}_{2} \ln 2+2 \mathrm{RT}_{2} \ln 2=3 \mathrm{RT}_{2} \ln 2=\mathrm{RT}_{2} \ln \mathrm{x}$
$\Rightarrow \quad x=2^{3}=8$
2. Ans. (0.30 to 0.32)

Sol. At 1 bar

$$
\begin{aligned}
& \alpha \longrightarrow \beta \\
& S_{\alpha(600)}^{0}=S_{\alpha(300)}^{0}+C_{P(\alpha)} \ln \frac{600}{300} \\
& S_{\beta(600)}^{0}=S_{\beta(300)}^{0}+C_{P(\beta)} \ln \frac{600}{300} \\
& S_{\beta(600)}^{0}-S_{\alpha(600)}^{0}=S_{\beta(300)}^{0}-S_{\alpha(300)}^{0}+\left(C_{P(\beta)}-C_{P(\alpha)}\right) \ln 2 \\
& 6-5=S_{\beta(300)}^{0}-S_{\alpha(300)}^{0}+1 \times \ln 2 \\
& 1=S_{\beta(300)}^{0}-S_{\alpha(300)}^{0}+0.69
\end{aligned}
$$

So $S_{\beta(300)}^{0}-S_{\alpha(300)}^{0}=0.31$

3. Ans. (300.00)

Sol. As the phase transition temperature is 600 K
So at $600 \mathrm{~K} \quad \Delta \mathrm{G}^{\circ}{ }_{\text {rxn }}=0$
So $\quad \Delta \mathrm{H}^{\circ}{ }_{\text {reaction (600) }}=\mathrm{T} \Delta \mathrm{S}^{\circ}$ reaction (600)
$\Delta \mathrm{H}^{\circ}{ }_{(600)}=600 \times 1=600 \mathrm{Joule} / \mathrm{mole}$
So $\Delta \mathrm{H}_{600}-\Delta \mathrm{H}_{300}=\Delta \mathrm{C}_{\mathrm{P}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$\Delta \mathrm{H}_{600}-\Delta \mathrm{H}_{300}=1 \times 300$

$$
\Delta \mathrm{H}_{300}=\Delta \mathrm{H}_{600}-300=600-300=300 \text { Joule } / \mathrm{mole} .
$$

4. Ans. (166.28)

Sol. $\quad \Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{RT} \ln \left(\frac{\mathrm{P}}{\mathrm{l}}\right)=\Delta \mathrm{H}^{\mathrm{o}}-\mathrm{T} \Delta \mathrm{S}^{\mathrm{o}}$
$\ln \left(\frac{\mathrm{P}}{\mathrm{l}}\right)=-\frac{\Delta \mathrm{H}^{0}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{\mathrm{o}}}{\mathrm{R}}$
Slope $=-\frac{\Delta \mathrm{H}^{0}}{\mathrm{R}}=10^{4} \times\left(-\frac{4}{2}\right)$
$\Rightarrow \Delta \mathrm{H}^{0}=2 \times 10^{4} \times \mathrm{R}$

$$
=166.28 \mathrm{~kJ} / \mathrm{mole}
$$

5. Ans. ($\mathbf{1 4 1 . 3 3}$ or $\mathbf{1 4 1 . 3 4)}$

Sol. From the plot when, $\frac{10^{4}}{T}=10 \Rightarrow T=1000 \mathrm{~K}$
$\ln \left(\frac{\mathrm{P}_{2}}{1}\right)=-3$
Substituting in equation :
$\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{l}}\right)=-\frac{\Delta \mathrm{H}^{0}}{\mathrm{RT}}+\frac{\Delta \mathrm{S}^{0}}{\mathrm{R}}$
We get,
$-3=-\frac{2 \times 10^{4} \times \mathrm{R}}{\mathrm{R} \times 1000}+\frac{\Delta \mathrm{S}^{0}}{\mathrm{R}}$
$\Rightarrow \Delta S^{0}=17 R$
$\Rightarrow \Delta \mathrm{S}^{0}=17 \times 8.314 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
$\Rightarrow \Delta \mathrm{S}^{0}=141.34 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
6. Ans. (A, C)

Sol. $\quad A \rightleftharpoons P$
given $T_{2}>T_{1}$

$$
\frac{\ln \mathrm{K}_{1}}{\ln \mathrm{~K}_{2}}>\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}
$$

$\Rightarrow \mathrm{T}_{1} \ln \mathrm{k}_{1}>\mathrm{T}_{2} \ln \mathrm{k}_{2}$
$\Rightarrow-\Delta \mathrm{G}^{\circ}{ }_{1}>-\Delta \mathrm{G}^{\circ}{ }_{2}$
$\Rightarrow\left(-\Delta H^{\circ}+\mathrm{T}_{1} \Delta \mathrm{~S}^{\circ}\right)>\left(-\Delta H^{\circ}+\mathrm{T}_{2} \Delta \mathrm{~S}^{\circ}\right)$
$\Rightarrow \mathrm{T}_{1} \Delta \mathrm{~S}^{\circ}>\mathrm{T}_{2} \Delta \mathrm{~S}^{\circ}$
$\Rightarrow \Delta \mathrm{S}^{\circ}<0$
7. Ans. (B, C)

Sol. $\Delta \mathrm{S}_{\text {surr. }}=\frac{-\mathrm{q}_{\text {process }}}{\mathrm{T}_{\text {surr. }}}$
If $\Delta \mathrm{H}>0$ on $\mathrm{T} \uparrow \mathrm{K}_{\text {eq }} \uparrow, \Delta \mathrm{S}_{\text {surr. }}<0$ (Surrounding is unfavourable)
If $\Delta \mathrm{H}<0$ on $\mathrm{T} \uparrow \mathrm{K}_{\text {eq }} \downarrow, \Delta \mathrm{S}_{\text {surr. }}>0$ (Surrounding is favourable)
8. Ans. (A) \rightarrow R, \mathbf{T}; (B) $\rightarrow P, Q, S ;(C) \rightarrow P, Q, S ;(D) \rightarrow P, Q, S, T$

Sol. (A)
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \stackrel{1 \mathrm{~atm}}{\stackrel{273 \mathrm{~K}}{\rightleftharpoons}} \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
$\mathrm{q}<0$
w <0 (expansion)

$\Delta \mathrm{S}_{\text {sys }}<0$
$\Delta \mathrm{U}<0$
$\Delta \mathrm{G}=0$ (At equilibrium)
(B) $\mathrm{q}=0$ (Isolated)
$\mathrm{w}=0$ (Isolated)
$\Delta \mathrm{S}_{\text {sys }}>0$ (Expansion)
$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=0$
$\Delta \mathrm{G}=\mathrm{nRTln} \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}<0$

(C) $\mathrm{q}=0$
$\mathrm{w}=0$
$\Delta \mathrm{S}_{\text {sys }}>0$ (mixing of gases)
$\Delta \mathrm{U}=0$

$(\Delta \mathrm{G})_{\mathrm{T}, \mathrm{P}}<0$ (Process is feasible)
(D)

$\left.\begin{array}{l}\mathrm{q}=0 \\ \mathrm{w}=0\end{array}\right] \begin{aligned} & \mathrm{q} \& \mathrm{w} \text { are path function but } \\ & \text { same path is re-traced }\end{aligned}$
$\left.\begin{array}{l}\Delta \mathrm{S}_{\text {sys }}=0 \\ \Delta \mathrm{U}=0 \\ \Delta \mathrm{G}=0\end{array}\right] \mathrm{S}, \mathrm{U}, \mathrm{G}$ are state functiona
9. Ans. (B)

Sol. At $100^{\circ} \mathrm{C}$ \& 1 atm vapourization of water is a reversible process, So
$\Delta \mathrm{S}_{\text {Universe }}=\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surroundings }}=0$
$\Rightarrow \Delta \mathrm{S}_{\text {system }}=-\Delta \mathrm{S}_{\text {surrounding }}$
During vapourization entropy of system increases
i.e., $\Delta \mathrm{S}_{\text {system }}>0$
i.e., $\Delta \mathrm{S}_{\text {surrounding }}<0$

