THERMODYNAMICS-I

1. One mole of an ideal monoatomic gas undergoes two reversible processes ($A \rightarrow B$ and $B \rightarrow C$) as shown in the given figure :

$A \rightarrow B$ is an adiabatic process. If the total heat absorbed in the entire process ($A \rightarrow B$ and $B \rightarrow C$) is $R T_{2} \ln 10$, the value of $2 \log V_{3}$ is \qquad .
[JEE(Advanced) 2023]
[Use, molar heat capacity of the gas at constant pressure, $\mathrm{C}_{\mathrm{p}, \mathrm{m}}=\frac{5}{2} \mathrm{R}$]
2. 2 mol of $\mathrm{Hg}(\mathrm{g})$ is combusted in a fixed volume bomb calorimeter with excess of O_{2} at 298 K and 1 atm into $\mathrm{HgO}(\mathrm{s})$. During the reaction, temperature increases from 298.0 K to 312.8 K . If heat capacity of the bomb calorimeter and enthalpy of formation of $\mathrm{Hg}(\mathrm{g})$ are $20.00 \mathrm{~kJ} \mathrm{~K}^{-1}$ and $61.32 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 298 K , respectively, the calculated standard molar enthalpy of formation of $\mathrm{HgO}(\mathrm{s})$ at 298 K is $\mathrm{X} \mathrm{kJ} \mathrm{mol}{ }^{-1}$. The value of $|\mathrm{X}|$ is \qquad .
[Given : Gas constant $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
[JEE(Advanced) 2022]
3. An ideal gas undergoes a reversible isothermal expansion from state I to state II followed by a reversible adiabatic expansion from state II to state III. The correct plot(s) representing the changes from state I to state III is(are)
($p:$ pressure, V : volume, T : temperature, $H:$ enthalpy, $S:$ entropy)
[JEE(Advanced) 2021]
(A)

(B)

(C)

(D)

4. One mole of an ideal gas at 900 K , undergoes two reversible processes, I followed by II, as shown below. If the work done by the gas in the two processes are same, the value of $\ln \frac{V_{3}}{V_{2}}$ is \qquad $-$
[JEE(Advanced) 2021]

(U : internal energy, S : entropy, p : pressure, V : volume, R : gas constant)
(Given: molar heat capacity at constant volume, $C_{V, \mathrm{~m}}$ of the gas is $\frac{5}{2} R$)
5. In thermodynamics the P-V work done is given by

$$
\mathrm{W}=-\int \mathrm{dV} \mathrm{P}_{\mathrm{ext}}
$$

For a system undergoing a particular process, the work done is ,

$$
\mathrm{w}=-\int \mathrm{dV}\left(\frac{\mathrm{RT}}{\mathrm{~V}-\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{~V}^{2}}\right) .
$$

This equation is applicable to a
[JEE(Advanced) 2020]
(A) System that satisfies the van der Waals equation of state.
(B) Process that is reversible and isothermal.
(C) Process that is reversible and adiabatic.
(D) Process that is irreversible and at constant pressure.
6. Tin is obtained from cassiterite by reduction with coke. Use the data given below to determine the minimum temperature (in K) at which the reduction of cassiterite by coke would take place.

At $298 \mathrm{~K}: \Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{SnO}_{2}(\mathrm{~s})\right)=-581.0 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\mathrm{f}} \mathrm{H}^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=-394.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \mathrm{S}^{\circ}\left(\mathrm{SnO}_{2}(\mathrm{~s})\right)=56.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^{\circ}(\mathrm{Sn}(\mathrm{~s}))=52.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \mathrm{~S}^{\circ}(\mathrm{C}(\mathrm{~s}))=6.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \mathrm{~S}^{\circ}\left(\mathrm{CO}_{2}(\mathrm{~g})\right)=210.0 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{aligned}
$$

Assume that the enthalpies and the entropies are temperature independent.
[JEE(Advanced) 2020]
7. Choose the reaction(s) from the following options, for which the standard enthalpy of reaction is equal to the standard enthalpy of formation.
[JEE(Advanced) 2019]
(A) $\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{3}(\mathrm{~g})$
(B) $\frac{1}{8} \mathrm{~S}_{8}(\mathrm{~s})+\mathrm{O}_{2}($ g $) \rightarrow \mathrm{SO}_{2}$ (g)
(C) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(D) $2 \mathrm{C}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$

ALLEN ${ }^{8}$

8. A reversible cyclic process for an ideal gas is shown below. Here, P , V and T are pressure , volume and temperature , respectively. The thermodynamic parameters $\mathrm{q}, \mathrm{w}, \mathrm{H}$ and U are heat, work, enthalpy and internal energy, respectively.
[JEE(Advanced) 2018]

The correct option(s) is (are)
(A) $\mathrm{q}_{\mathrm{AC}}=\Delta \mathrm{U}_{\mathrm{BC}}$ and $\mathrm{w}_{\mathrm{AB}}=\mathrm{P}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$
(B) $\mathrm{w}_{\mathrm{BC}}=\mathrm{P}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$ and $\mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{AC}}$
(C) $\Delta \mathrm{H}_{\mathrm{CA}}<\Delta \mathrm{U}_{\mathrm{CA}}$ and $\mathrm{q}_{\mathrm{AC}}=\Delta \mathrm{U}_{\mathrm{BC}}$
(D) $\mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{AC}}$ and $\Delta \mathrm{H}_{\mathrm{CA}}>\Delta \mathrm{U}_{\mathrm{CA}}$
9. The surface of copper gets tarnished by the formation of copper oxide. N_{2} gas was passed to prevent the oxide formation during heating of copper at 1250 K . However, the N_{2} gas contains 1 mole $\%$ of water vapour as impurity. The water vapour oxidises copper as per the reaction given below :
$2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g})$
$\mathrm{P}_{\mathrm{H} 2}$ is the minimum partial pressure of H_{2} (in bar) needed to prevent the oxidation at 1250 K . The value of $\ln \left(\right.$ P $\left._{\mathrm{H} 2}\right)$ is \qquad .
(Given : total pressure $=1 \mathrm{bar}, \mathrm{R}$ (universal gas constant) $=8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \ln (10)=2.3 . \mathrm{Cu}(\mathrm{s})$ and $\mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$ are mutually immiscible.

At $1250 \mathrm{~K}: 2 \mathrm{Cu}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s}) ; \Delta \mathrm{G}^{\theta}=-78,000 \mathrm{~J} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{G}^{\theta}=-1,78,000 \mathrm{~J} \mathrm{~mol}^{-1} ; \mathrm{G}$ is the Gibbs energy)
[JEE(Advanced) 2018]
10. An ideal gas is expanded from ($\mathrm{p}_{1}, \mathrm{~V}_{1}, \mathrm{~T}_{1}$) to ($\mathrm{p}_{2}, \mathrm{~V}_{2}, \mathrm{~T}_{2}$) under different conditions. The correct statement(s) among the following is(are)
[JEE(Advanced) 2017]
(A) The work done on the gas is maximum when it is compressed irreversibly from ($\mathrm{p}_{2}, \mathrm{~V}_{2}$) to ($\mathrm{p}_{1}, \mathrm{~V}_{1}$) against constant pressure p_{1}
(B) The work done on the gas is less when it is expanded reversibly from V_{1} to V_{2} under adiabatic conditions as compared to that when expanded reversibly from V_{1} to V_{2} under isothermal conditions.
(C) The change in internal energy of the gas (i) zero, if it is expanded reversibly with $\mathrm{T}_{1}=\mathrm{T}_{2}$, and (ii) positive, if it is expanded reversibly under adiabatic conditions with $\mathrm{T}_{1} \neq \mathrm{T}_{2}$
(D) If the expansion is carried out freely, it is simultaneously both isothermal as well as adiabatic.
11. The standard state Gibbs free energies of formation of C (graphite) and C (diamond) at $\mathrm{T}=298 \mathrm{~K}$ are

$$
\begin{aligned}
& \Delta_{\mathrm{f}} \mathrm{G}^{\circ}[\mathrm{C}(\text { graphite })]=0 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta_{\mathrm{f}} \mathrm{G}^{\circ}[\mathrm{C}(\text { diamond })]=2.9 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

The standard state means that the pressure should be 1 bar, and substance should be pure at a given temperature. The conversion of graphite [C(graphite)] to diamond [C(diamond)] reduces its volume by $2 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$. If C (graphite) is converted to C (diamond) isothermally at $\mathrm{T}=298 \mathrm{~K}$, the pressure at which C (graphite) is in equilibrium with C (diamond), is
[JEE(Advanced) 2017]
[Useful information : $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} ; 1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2} ; 1$ bar $=10^{5} \mathrm{~Pa}$]
(A) 14501 bar
(B) 29001 bar
(C) 58001 bar
(D) 1405 bar
12. One mole of an ideal gas at 300 K in thermal contact with surroundings expands isothermally from 1.0 L to 2.0 L against a constant pressure of 3.0 atm . In this process, the change in entropy of surroundings ($\Delta \mathrm{S}_{\text {surr }}$) in $\mathrm{J} \mathrm{K}^{-1}$ is -
[JEE(Advanced) 2016]
($1 \mathrm{~L} \mathrm{~atm}=101.3 \mathrm{~J}$)
(A) 5.763
(B) 1.013
(C) -1.013
(D) -5.763
13. An ideal gas in thermally insulated vessel at internal pressure $=P_{1}$, volume $=V_{1}$ and absolute temperature $=T_{1}$ expands irrversibly against zero external pressure, as shown in the diagram. The final internal pressure, volume and absolute temperature of the gas are P_{2}, V_{2} and T_{2}, respectively. For this expansion,
[JEE(Advanced) 2014]

(A) $q=0$
(B) $\mathrm{T}_{2}=\mathrm{T}_{1}$
(C) $P_{2} V_{2}=P_{1} V_{1}$
(D) $P_{2} V_{2}{ }^{\gamma}=P_{1} V_{1}{ }^{\gamma}$

SOLUTIONS

1. Ans. (7)

Sol. For A \rightarrow B

$$
600 \mathrm{~V}_{1}^{\gamma-1}=60 \mathrm{~V}_{2}^{\gamma-1} \quad(\gamma=5 / 3)
$$

(Reversible adiabatic)
$\Rightarrow 600\left(\mathrm{~V}_{1}\right)^{2 / 3}=60\left(\mathrm{~V}_{2}\right)^{2 / 3}$
$\Rightarrow 10=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)^{2 / 3}$
$\Rightarrow 10=\left(\frac{\mathrm{V}_{2}}{10}\right)^{2 / 3}$
$\Rightarrow \mathrm{V}_{2}=10(10)^{3 / 2}=10^{5 / 2}$
Now, $\mathrm{q}_{\mathrm{net}}=\mathrm{RT}_{2} \ln 10=60 \mathrm{R} \ln 10=\mathrm{q}_{\mathrm{AB}}+\mathrm{q}_{\mathrm{BC}}$
$\because \mathrm{q}_{\mathrm{AB}}=0$
$\Rightarrow \quad \mathrm{q}_{\mathrm{BC}}=60 \mathrm{R} \ln 10=60 \mathrm{R} \ln \frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}} \quad[\because \mathrm{~B} \rightarrow \mathrm{C}$ is reversible isothermal $]$
$\Rightarrow 60 \mathrm{R} \ln 10=60 \mathrm{R} \ln \left(\frac{\mathrm{V}_{3}}{10^{5 / 2}}\right)$
$\Rightarrow \log 10=\log \mathrm{V}_{3}-\frac{5}{2}$
$\Rightarrow \quad \log \mathrm{V}_{3}=\frac{7}{2} \Rightarrow 2 \log \mathrm{~V}_{3}=7$
2. Ans. (89.00-91.00)

Sol. $\mathrm{Q}_{\mathrm{rxn}}=\mathrm{C} \Delta \mathrm{T}$
$|\Delta \mathrm{U}| \times 2=20 \times 14.8$
$|\Delta \mathrm{U}|=148 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{U}=-148 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{Hg}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HgO}(\mathrm{s}): \Delta \mathrm{U}=-148 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$
$=-148-\frac{3}{2} \times \frac{8.3}{1000} \times 298=-151.7101$
$\mathrm{Hg}(\mathrm{l})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{HgO}(\mathrm{s})$
$\Delta \mathrm{H}=-151.7101+61.32=-90.39 \mathrm{~kJ} / \mathrm{mol}$
3. Ans. (A, B, D)

Sol. From state I to II (Reversible isothermal expansion)
$\Rightarrow \mathrm{P}$ decreases, V increases, T constant H constant \& S increases.
From state II to III (Reversible adiabatic expansion)
$\Rightarrow \mathrm{P}$ decreases, V increases, T decreases H decreases, S constant
\therefore Plots (A), (B), (D) are correct while (C) is wrong as from II to III, H is decreasing.
4. Ans. (10)

Sol. $\Delta \mathrm{U}_{\mathrm{I}}=\mathrm{nC}_{\mathrm{v}, \mathrm{m}} \Delta \mathrm{T}=\mathrm{W}_{\mathrm{I}}\left\{\mathrm{q}_{\mathrm{I}}=0\right\}$
$-1800 R=1 \times \frac{5 R}{2} \times \Delta T=\Delta T=-720 K$
$\mathrm{T}_{2}=180 \mathrm{~K}$
$\mathrm{W}_{\mathrm{II}}=\mathrm{W}_{\mathrm{I}}=-1800 \mathrm{R}=-1 \times \mathrm{R} \times 180 \ln \left(\frac{\mathrm{~V}_{3}}{\mathrm{~V}_{2}}\right)$
$\ln \left(\frac{\mathrm{V}_{3}}{\mathrm{~V}_{2}}\right)=10 \Rightarrow 10$
5. Ans. (A, B, C)

Sol. For 1 mole Vander Waal's gas

$$
\mathrm{P}=\frac{\mathrm{RT}}{\mathrm{~V}-\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{~V}^{2}}
$$

If $\mathrm{P}_{\mathrm{ext}}=\mathrm{P}$, means process is reversible. For Vanderwaal gas, expression is correct for all reversible process.
6. Ans. (935.00)

Sol. $\mathrm{SnO}_{2(\mathrm{~S})}+\mathrm{C}_{(\mathrm{S})} \longrightarrow \mathrm{Sn}_{(\mathrm{S})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{rxn}}=[-394]-[-581]=187 \mathrm{~kJ} /$ mole
$\Delta \mathrm{S}^{\circ}{ }_{\mathrm{rxn}}=[52+210]-[56+6]$
$=200 \mathrm{~J} / \mathrm{k}-\mathrm{mole}$
$\mathrm{T}=\frac{\Delta \mathrm{H}^{\circ}}{\Delta \mathrm{S}^{\circ}}=\frac{187 \times 1000}{200}=935 \mathrm{~K}$
7. Ans. (A, B)

Sol. Enthalpy of formation is defined as enthalpy change for formation of 1 mole of substance from its elements, present in their natural most stable form.
8. Ans. (B, C)

Sol. AC \rightarrow Isochoric
$\mathrm{AB} \rightarrow$ Isothermal
BC \rightarrow Isobaric
$\# \mathrm{q}_{\mathrm{AC}}=\Delta \mathrm{U}_{\mathrm{BC}}=\mathrm{nC}_{\mathrm{V}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$

$$
\begin{array}{cc}
\mathrm{W}_{\mathrm{AB}}=\mathrm{nRT}_{1} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right) & \text { A (wrong) } \\
\text { \# } \mathrm{q}_{\mathrm{BC}}=\Delta \mathrm{H}_{\mathrm{AC}}=\mathrm{nC}_{\mathrm{P}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right) & \\
\mathrm{W}_{\mathrm{BC}}=-\mathrm{P}_{2}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) & \text { B (correct) } \\
\text { \# } \mathrm{nC}_{\mathrm{P}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)<\mathrm{nC}_{\mathrm{V}}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right) & \mathrm{C} \text { (correct) } \\
\Delta \mathrm{H}_{\mathrm{CA}}<\Delta \mathrm{U}_{\mathrm{CA}} & \\
\text { \# D (wrong) } &
\end{array}
$$

9. Ans. (-14.6)

Sol. $2 \mathrm{Cu}(\mathrm{s})+\frac{1}{4} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 1 \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s})$
$\left[\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right.$ $\Delta \mathrm{G}^{\circ}=-78 \mathrm{~kJ}$

Hence, $2 \mathrm{Cu}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2}(\mathrm{~g})$
$\Delta \mathrm{G}^{\circ}=+100 \mathrm{~kJ}$
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$0=+100+\frac{8}{1000} \times 1250 \ln \frac{\mathrm{P}_{\mathrm{H}_{2}}}{\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}}$
$-\frac{100 \times 1000}{8}=1250 \ln \frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left(\frac{1}{100} \times 1\right)}$
$\ln \mathrm{P}_{\mathrm{H}_{2}}=-14.6$
10. Ans. (A, B, D)

Sol. (A) P_{\uparrow}

(B)

(C) (i) $\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}=0$ (isothermal hence $\Delta \mathrm{T}=0$)
(ii) $\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=-\mathrm{ve}(\mathrm{q}=0, \mathrm{w}<0)$

$$
\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{~T} \Rightarrow \Delta \mathrm{~T}<0
$$

(D) $\mathrm{q}=0$ (adiabatic), $\mathrm{w}=0$ (free expansion)

$$
\Delta \mathrm{U}=0 \Rightarrow \Delta \mathrm{~T}=0 \text { (isothermal) }
$$

11. Ans. (A)

Sol. $\mathrm{C}($ graphite $) \rightarrow \mathrm{C}($ diamond $) ; \Delta \mathrm{G}^{0}=\Delta_{\mathrm{f}} \mathrm{G}_{\text {diamond }}^{0}-\Delta_{\mathrm{f}} \mathrm{G}_{\text {graphite }}^{0}=2.9 \mathrm{~kJ} / \mathrm{mole}$ at 1 bar
As $\mathrm{dG}_{\mathrm{T}}=\mathrm{V} . \mathrm{dP}$
$\int_{\Delta G_{1}}^{\Delta G_{2}} d\left(\Delta G_{T}\right)=\int_{P_{1}}^{P_{2}} \Delta V \cdot d P$
$\Delta \mathrm{G}_{2}-\Delta \mathrm{G}_{1}=\Delta \mathrm{V} .\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)$
$\left(2.9 \times 10^{3}-0\right)=\left(-2 \times 10^{-6}\right)\left(1-\mathrm{P}_{2}\right)$
$\mathrm{P}_{2}-1=\frac{2.9 \times 10^{3}}{2 \times 10^{-6}} \mathrm{~Pa}=1.45 \times 10^{4}$ bar
$\mathrm{P}_{2}=14501$ bar
12. Ans. (C)

Sol. From $1^{\text {st }}$ law of thermodynamics

$$
\begin{aligned}
& \mathrm{q}_{\text {sys }}=\Delta \mathrm{U}-\mathrm{w}=0-\left[-\mathrm{P}_{\text {ext }} . \Delta \mathrm{V}\right] \\
& \quad=3.0 \mathrm{~atm} \times(2.0 \mathrm{~L}-1.0 \mathrm{~L})=3.0 \mathrm{~L}-\mathrm{atm} \\
& \therefore \Delta \mathrm{~S}_{\text {surr }}=\frac{\left(\mathrm{q}_{\text {rev }}\right)_{\text {surr }}}{\mathrm{T}}=-\frac{\mathrm{q}_{\text {sys }}}{\mathrm{T}}=-\frac{3.0 \times 101.3 \mathrm{~J}}{300 \mathrm{~K}}=-1.013 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

13. Ans. (A, B, C)

Sol. Process is adiabatic $\mathrm{q}=0$

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{ext}}=0 & \mathrm{w}=0 \\
\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}=0 &
\end{array}
$$

The change in internal energy of an ideal gas depends only on temperature therefore $\Delta \mathrm{T}=0$ hence process is isothermal therefore
$\mathrm{T}_{2}=\mathrm{T}_{1} \& \mathrm{P}_{2} \mathrm{~V}_{2}=\mathrm{P}_{1} \mathrm{~V}_{1}$
D is incorrect, it is valid for adiabatic reversible process

