## PHYSICAL CHEMISTRY

## REDOX REACTION

## Question Stem for Question Nos. 1 and 2

## Question Stem

A sample ( 5.6 g ) containing iron is completely dissolved in cold dilute HCl to prepare a 250 mL of solution. Titration of 25.0 mL of this solution requires 12.5 mL of $0.03 \mathrm{M} \mathrm{KMnO}_{4}$ solution to reach the end point. Number of moles of $\mathrm{Fe}^{2+}$ present in 250 mL solution is $\mathbf{x} \times 10^{-2}$ (consider complete dissolution of $\mathrm{FeCl}_{2}$ ). The amount of iron present in the sample of $\mathbf{y} \%$ by weight.
(Assume : $\mathrm{KMnO}_{4}$ reacts only with $\mathrm{Fe}^{2+}$ in the solution
Use : Molar mass of iron as $56 \mathrm{~g} \mathrm{~mol}^{-1}$ )
[JEE(Advanced) 2021]

1. The value of $\mathbf{x}$ is $\qquad$ —.
2. The value of $\mathbf{y}$ is $\qquad$ .
3. In the chemical reaction between stoichiometric quantities of $\mathrm{KMnO}_{4}$ and KI in weakly basic solution, what is the number of moles of $\mathrm{I}_{2}$ released for 4 moles of $\mathrm{KMnO}_{4}$ consumed?
[JEE(Advanced) 2020]
4. An acidified solution of potassium chromate was layered with an equal volume of amyl alcohol. When it was shaken after the addition of 1 mL of $3 \% \mathrm{H}_{2} \mathrm{O}_{2}$, a blue alcohol layer was obtained. The blue color is due to the formation of a chromium (VI) compound ' $\mathbf{X}$ ' . What is the number of oxygen atoms bonded to chromium through only single bonds in a molecule of $\mathbf{X}$ ?
[JEE(Advanced) 2020]
5. The amount of water produced (in g) in the oxidation of 1 mole of rhombic sulphur by conc. $\mathrm{HNO}_{3}$ to a compound with the highest oxidation state of sulphur is $\qquad$ -.
(Given data : Molar mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$ )
[JEE(Advanced) 2019]
6. To measure the quantity of $\mathrm{MnCl}_{2}$ dissolved in an aqueous solution, it was completely converted to $\mathrm{KMnO}_{4}$ using the reaction,
$\mathrm{MnCl}_{2}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KMnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$ (equation not balanced).
Few drops of concentrated HCl were added to this solution and gently warmed. Further, oxalic acid ( 225 g ) was added in portions till the colour of the permanganate ion disappeard. The quantity of $\mathrm{MnCl}_{2}$ (in mg ) present in the initial solution is $\qquad$ —.
(Atomic weights in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{Mn}=55, \mathrm{Cl}=35.5$ )
[JEE(Advanced) 2018]
7. In neutral or faintly alkaline solution, 8 moles permanganate anion quantitatively oxidize thiosulphate anions to produce X moles of a sulphur containing product. the magnitude of X is
[JEE(Advanced) 2016]
8. For the reaction
$\mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+\mathrm{HSO}_{4}^{-}+\mathrm{I}_{2}$
The correct statement(s) in the balanced equation is / are :
[JEE(Advanced) 2014]
(A) Stoichiometric coefficient of $\mathrm{HSO}_{4}^{-}$is 6
(B) Iodide is oxidized
(C) Sulphur is reduced
(D) $\mathrm{H}_{2} \mathrm{O}$ is one of the products
9. Hydrogen peroxide in its reaction with $\mathrm{KlO}_{4}$ and $\mathrm{NH}_{2} \mathrm{OH}$ respectively, is acting as a
[JEE(Advanced) 2014]
(A) reducing agent, oxidising agent
(B) reducing agent, reducing agent
(C) oxidising agent, oxidising agent
(D) oxidising agent, reducing agent

## SOLUTIONS

1. Ans. (1.87 or 1.88)
2. Ans. (18.75)

Solution for Q. 1 \& Q. 2
$\mathrm{Fe}+2 \mathrm{HCl} \longrightarrow \mathrm{FeCl}_{2}+\mathrm{H}_{2}$
x mole $x$ mole
$\mathrm{Fe}^{+2}+\quad \mathrm{MnO} 4^{-}$
$\frac{\mathrm{x}}{10 \text { mole }} \quad 12.5 \mathrm{ml}$
0.03 M
$\mathrm{n}_{\mathrm{f}}=1 \quad \mathrm{n}_{\mathrm{f}}=5$
$\frac{\mathrm{x}}{10}=\frac{12.5 \times 0.03 \times 5}{1000}$
$\mathrm{x}=0.01875(\mathrm{x}=1.88$ or 1.87$)$
wt of $\mathrm{Fe}=1.05 \mathrm{~g}$
$\% \mathrm{Fe}=\frac{1.05}{5.6} \times 100=18.75$
3. Ans. (6)

Sol. $\mathrm{KMnO}_{4}+\mathrm{KI} \longrightarrow \mathrm{MnO}_{2}+\mathrm{I}_{2}$
Eq of $\mathrm{KMnO}_{4}=\mathrm{Eq}$ of $\mathrm{I}_{2}$
$4 \times 3=n \times 2$
$\mathrm{n}=6$
4. Ans. (4)

Sol. $\mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow[\text { (In acidic medium) }]{\text { Amyl alcohol }} \underset{\substack{(\mathrm{X}) \\ \text { (Blue liquid) }}}{\mathrm{CrO}_{5}}$
Here the structure of $\mathrm{CrO}_{5}$ is :-


Here, single bonded O -atoms with Cr is $=04$
5. Ans. (288.00 to 288.30)

Sol. $\mathrm{S}_{8}+48 \mathrm{HNO}_{3} \longrightarrow 8 \mathrm{H}_{2} \mathrm{SO}_{4}+48 \mathrm{NO}_{2}+16 \mathrm{H}_{2} \mathrm{O}$
1 mole of rhombic sulphur produce 16 mole of $\mathrm{H}_{2} \mathrm{O}$ i.e. 288 gm of $\mathrm{H}_{2} \mathrm{O}$
6. Ans. (126)

Sol. $\underset{\text { a mole }}{\mathrm{MnCl}_{2}}+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { amole }}{\mathrm{KMnO}_{4}}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{HCl}$
$\mathrm{C}_{2} \mathrm{O}_{4}^{--}+\mathrm{MnO}_{4}^{-} \xrightarrow{\mathrm{H}^{+}} \mathrm{CO}_{2}$
$\mathrm{m}_{\mathrm{eq}}$ of $\mathrm{C}_{2} \mathrm{O}_{4}^{--}=\mathrm{m}_{\mathrm{eq}}$ of $\mathrm{MnO}_{4}^{-}$
$2 \times 0.225 / 90=\mathrm{a} \times 5$
$a=1 \times[55+71]=126 \mathrm{mg}$
7. Ans. (6)
 X

Equivalents of $\mathrm{MnO}_{4}{ }^{-}=$equivalents of $\mathrm{SO}_{4}{ }^{2-}$
Moles of $\mathrm{MnO}_{4}{ }^{-} \times \mathrm{n}$-factor $=$ moles of $\mathrm{SO}_{4}{ }^{2-} \times \mathrm{n}$-factor
$8 \times 3=X \times 4$
$X=6$
8. Ans. (A, B, D)

Sol. Oxidation half reaction :
$2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}$
Reduction half reaction
$6 \mathrm{H}^{+}+\mathrm{ClO}_{3}^{-}+6 \mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
Multiplying equation (1) by 3 and add in (2)
$6 \mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
$6 \mathrm{I}^{-}+\mathrm{ClO}_{3}^{-}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Cl}^{-}+3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{HSO}_{4}^{-}$
9. Ans. (A)
$+7$
Sol. $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{KIO}_{4} \longrightarrow \mathrm{O}_{2}+\mathrm{I}$ (with oxidation state lower than 7)
Reducing agent
$-1 \quad+3$
$40 \mathrm{NH}_{2} \mathrm{OH}+10 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 7 \mathrm{H}_{2} \mathrm{O}+20 \mathrm{~N}_{2} \mathrm{O}_{3}$
Oxidising
agent

