REAL GAS

1. A gas has a compressibility factor of 0.5 and a molar volume of $0.4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ at a temperature of 800 K and pressure $\mathbf{x ~ a t m}$. If it shows ideal gas behaviour at the same temperature and pressure, the molar volume will be $\mathbf{y ~ d m}{ }^{3} \mathrm{~mol}^{-1}$. The value of \mathbf{x} / \mathbf{y} is \qquad .
[JEE(Advanced) 2023]
[Use: Gas constant, $\mathrm{R}=8 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
2. One mole of a monoatomic real gas satisfied the equation $p(V-b)=R T$ where b is a constant. The relationship of interatomic potential $\mathrm{V}(\mathrm{r})$ and interatomic distance r for the gas is given by -
[JEE(Advanced) 2015]
(A) $\mathrm{V}(\mathrm{r}) \mid{ }_{0}{ }^{\mathrm{r}}$
(B) $\mathrm{V}(\mathrm{r})$

(C) $\mathrm{V}(\mathrm{r})$

(D) $V(r)$

3. For one mole of a van der Waals gas when $\mathrm{b}=0$ and $\mathrm{T}=300 \mathrm{~K}$, the PV vs. $1 / \mathrm{V}$ plot is shown below. The value of the van der Waals constant a (atm. liter ${ }^{2} \mathrm{~mol}^{-2}$) is
[IIT-JEE 2012]

(A) 1.0
(B) 4.5
(C) 1.5
(D) 3.0

SOLUTIONS

1. Ans. (100)

Sol. For gas : $\mathrm{Z}=0.5, \mathrm{~V}_{\mathrm{m}}=0.4 \mathrm{~L} / \mathrm{mol}$

$$
\mathrm{T}=800 \mathrm{~K}, \mathrm{P}=\mathrm{X} \text { atm }
$$

$\Rightarrow \mathrm{Z}=\frac{\mathrm{PV}}{\mathrm{m}}$
$\Rightarrow \frac{\mathrm{X}(0.4)}{0.08 \times 800}=0.5$
$\Rightarrow \quad X=80$
For ideal gas, $\mathrm{PV}_{\mathrm{m}}=\mathrm{RT}$
$\Rightarrow \quad \mathrm{V}_{\mathrm{m}}=\frac{\mathrm{RT}}{\mathrm{P}}=\frac{0.08 \times 800}{80}=0.8 \mathrm{~L} \mathrm{~mol}^{-1}=\mathrm{y}$
Then, $\frac{\mathrm{x}}{\mathrm{y}}=\frac{80}{0.8}=100$
2. Ans. (C)

Sol. $P(V-b)=R T$
$\because a=0$
Since only repulsive forces are present.
Repulsive forces contribute only at very close distance.
So potential energy increases abruptly.

3. Ans. (C)

Sol. $\left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{V}^{2}}\right)(\mathrm{V}-0)=\mathrm{RT}$ as $(\mathrm{n}=1)$
$\mathrm{PV}=\mathrm{RT}-\frac{\mathrm{a}}{\mathrm{V}}$
On comparing slope from graph
$-\mathrm{a}=\frac{20.1-21.6}{3-2}$
$-\mathrm{a}=\frac{-1.5}{1}=\mathrm{a}=1.5$

