PHYSICAL CHEMISTRY

MOLE CONCEPT

1. The treatment of an aqueous solution of 3.74 g of $Cu(NO_3)_2$ with excess KI results in a brown solution along with the formation of a precipitate. Passing H_2S through this brown solution gives another precipitate X. The amount of X (in g) is _____.

[Given : Atomic mass of H = 1, N = 14, O = 16, S = 32, K = 39, Cu = 63, I = 127]

[JEE(Advanced) 2022]

Dissolving 1.24 g of white phosphorous in boiling NaOH solution in an inert atmosphere gives a gas Q. The amount of CuSO₄ (in g) required to completely consume the gas Q is _____.
[Given: Atomic mass of H = 1, O = 16, Na = 23, P = 31, S = 32, Cu = 63] [JEE(Advanced) 2022]

3. To check the principle of multiple proportions, a series of pure binary compounds (P_mQ_n) were analyzed and their composition is tabulated below. The correct option(s) is(are) [JEE(Advanced) 2022]

Compound	Weight % of P	Weight % of Q
1	50	50
2	44.4	55.6
3	40	60

- (A) If empirical formula of compound 3 is P_3Q_4 , then the empirical formula of compound 2 is P_3Q_5 .
- (B) If empirical formula of compound $\bf 3$ is P_3Q_2 and atomic weight of element P is 20, then the atomic weight of Q is 45.
- (C) If empirical formula of compound 2 is PQ, then the empirical formula of the compound 1 is P₅Q₄.
- (D) If atomic weight of P and Q are 70 and 35, respectively, then the empirical formula of compound 1 is P_2Q .

Question Stem for Question Nos. 4 and 5

Question Stem

Reaction of \mathbf{x} g of Sn with HCl quantitatively produced a salt. Entire amount of the salt reacted with \mathbf{y} g of nitrobenzene in the presence of required amount of HCl to produce 1.29 g of an organic salt (quantitatively).

(Use Molar masses (in g mol^{-1}) of H, C, N, O, Cl and Sn as 1, 12, 14, 16, 35 and 119, respectively).

[JEE(Advanced) 2021]

- 4. The value of \mathbf{x} is _____.
- 5. The value of \mathbf{y} is _____.

- Aluminium reacts with sulfuric acid to form aluminium sulfate and hydrogen. What is the volume of hydrogen gas in liters (L) produced at 300 K and 1.0 atm pressure, when 5.4 g of aluminium and 50.0 mL of 5.0 M sulfuric acid are combined for the reaction?

 (Use molar mass of aluminium as 27.0 g mol⁻¹, R = 0.082 atm L mol⁻¹ K⁻¹) [JEE(Advanced) 2020]
- 7. The ammonia prepared by treating ammonium sulphate with calcium hydroxide is completely used by NiCl₂.6H₂O to form a stable coordination compound. Assume that both the reactions are 100% complete. If 1584 g of ammonium sulphate and 952g of NiCl₂.6H₂O are used in the preparation, the combined weight (in grams) of gypsum and the nickel-ammonia coordination compound thus produced is _____. (Atomic weights in g mol⁻¹: H = 1, N = 14, O = 16, S = 32, Cl = 35.5, Ca = 40, Ni = 59)

[JEE(Advanced) 2018]

8. If the value of Avogadro number is $6.023 \times 10^{23} \text{ mol}^{-1}$ and the value of Boltzmann constant is $1.380 \times 10^{-23} \text{ JK}^{-1}$, then the number of significant digits in the calculated value of the universal gas constant is

[JEE(Advanced) 2014]

SOLUTIONS

1. Ans.
$$(0.31 - 0.33)$$

Sol.
$$2Cu(NO_3)_2 + 5KI \longrightarrow Cu_2I_2 + KI_3 + 4KNO_3$$

 0.02 0.01
 $KI_3 + H_2S \longrightarrow S \downarrow + KI + 2HI$
 0.01 0.01

$$n_S = 0.01$$
 mole

weight of sulphur = $32 \times 0.01 = 0.32$ gm

2. Ans. (2.37 - 2.41)

Sol. Mole of
$$P_4 = \frac{1.24}{31 \times 4} = 0.01$$

$$P_4 + 3NaOH + 3H_2O \longrightarrow PH_3 + 3NaH_2PO_2$$

$$2PH_3 + 3CuSO_4 \rightarrow Cu_3P_2 + 3H_2SO_4$$

$$0.01 \qquad \frac{3}{2} \times 0.01$$
$$= \frac{0.03}{2} \text{ moles}$$

$$W_{\text{CuSO}_4} = \frac{0.03}{2} \times 159 = 2.385 \text{ gm}$$

Ans.
$$= 2.38$$
 or 2.39

3. Ans. (B, C)

Sol.

Compound	Weight % of P	Weight % of Q
1	50	50
2	44.4	55.6
3	40	60

For option (A)

Let atomic mass of P be M_P and atomic mass of Q be M_Q

Molar ratio of atoms P: Q in compound 3 is

$$\frac{40}{M_{P}}:\frac{60}{M_{Q}}=3:4$$

$$\frac{2M_Q}{3M_p} = \frac{3}{4} \Rightarrow 9M_P = 8M_Q$$

Molar ratio of atoms P: Q in compound 2 is

$$\frac{44.4}{M_P} : \frac{55.6}{M_Q}$$
= 44.4 M_Q: 55.6 M_P
= 44.4 M_Q: 55.6 × $\frac{8M_Q}{9}$
= 44.4 : 55.6 × $\frac{8}{9}$ = 9 : 10

 \Rightarrow Empirical formula of compound 2 is therefore P_9Q_{10}

Option (A) in incorrect

For option (B)

Molar Ratio of atoms P: Q in compound 3 is $\frac{40}{M_P}$: $\frac{60}{M_Q}$ = 3:2

$$\frac{2M_Q}{3M_P} = \frac{3}{2} \Rightarrow 9M_P = 4M_Q$$

If
$$M_P = 20$$
 $\Rightarrow M_Q = \frac{9 \times 20}{4} = 45$

Option (B) is correct

For option (C)

Molar ratio of atoms P: Q in compound 2 is

$$\frac{44.4}{M_p}: \frac{55.6}{M_0} = 44.4M_Q: 55.6 M_p = 1:1$$

$$\Rightarrow \frac{M_P}{M_O} = \frac{44.4}{55.6}$$

Molar ratio of atoms P: Q in compound 1 is

$$\frac{50}{M_P}: \frac{50}{M_O} = M_Q: M_P$$

$$= 55.6:44.4$$

$$\simeq 5:4$$

Hence, empirical formula of compound 1 is P₅Q₄

Hence, option (C) is correct

For option (D)

Molar ratio of atoms P: Q in compound 1 is

$$\frac{50}{\mathrm{M}_{\mathrm{P}}}:\frac{50}{\mathrm{M}_{\mathrm{Q}}}=\mathrm{M}_{\mathrm{Q}}:\mathrm{M}_{\mathrm{P}}$$

$$= 35:70=1:2$$

Hence, empirical formula of compound 1 is PQ₂

Hence, option (D) is incorrect

4. Ans. (3.57)

Sol. The value of \mathbf{x} is

$$3Sn + 6HCl + \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc + 3SnCl_2 + 2H_2O$$

$$357 \text{ gm}$$

$$(3 \text{ mole})$$

$$123 \text{ gm}$$

$$(1 \text{ mole})$$

$$+ \text{NH}_3Cl^-$$

$$1 \text{ mole}$$

(72 + 8 + 35) + 14 = 129gm (molecular weight of organic salt)

So to get 1.29 gm organic salt.

We have to form 0.01 mole salt.

So 0.01 mole nitrobenzene is required.

0.03 mole Sn is required.

So the amount of nitrobenzene = $0.01 \times 123 = 1.23$ gm

the amount of Sn required = $0.01 \times 357 = 3.57$ gm

5. Ans. (1.23)

Sol. The value of \mathbf{y} is

$$3Sn + 6HCl + \bigcirc \longrightarrow \bigcirc \longrightarrow +3SnCl_2 + 2H_2O$$

$$357 \text{ gm}$$

$$(3 \text{ mole})$$

$$123 \text{ gm}$$

$$(1mole)$$

$$1 \text{ mole}$$

$$(72 + 8 + 35) + 14$$

$$= 129gm \text{ (molecular weight of organic salt)}$$

So to get 1.29 gm organic salt.

We have to form 0.01 mole salt.

So 0.01 mole nitrobenzene is required.

0.03 mole Sn is required.

So the amount of nitrobenzene = $0.01 \times 123 = 1.23$ gm

the amount of Sn required = $0.01 \times 357 = 3.57$ gm

Ans. 3.57 & 1.23

Sol.
$$2Al + 3H_2SO_4 \longrightarrow Al_2(SO_4)_3 + 3H_2$$

Moles of Al takes =
$$\frac{5.4}{27}$$
 = 0.2

moles of
$$H_2SO_4$$
 taken = $\frac{50 \times 5.0}{1000} = 0.25$

As
$$\frac{0.2}{2} > \frac{0.25}{3}$$
, H_2SO_4 is limiting reagent

Now, moles of H₂ formed =
$$\frac{3}{3} \times 0.25 = 0.25$$

$$\therefore \quad \text{Volume of } H_2 \text{ gas formed} = \frac{nRT}{P} = \frac{0.25 \times 0.082 \times 300}{1} = 6.15 \text{ L}$$

7. Ans. (2992)

Sol.
$$(NH_4)_2 SO_4 + Ca(OH)_2 \rightarrow CaSO_4.2H_2O + 2NH_3$$

$$\underset{=12 \text{ mol}}{\underset{1584 \text{ g}}{\text{gypsum}}} (M=172) \qquad 24 \text{mole}$$

$$NiCl_{2} \cdot 6H_{2}O + 6NH_{3} \rightarrow \left[Ni(NH_{3})_{6}\right]Cl_{2} + 6H_{2}O$$

$$(M=232)$$
4 mol

Total mass = $12 \times 172 + 4 \times 232 = 2992$ g

- 8. Ans. (4)
- **Sol.** Universal gas constant $R = kN_A$

where k= Boltzman constant and N_A = Avogadro number

∴ R =
$$1.380 \times 10^{-23} \times 6.023 \times 10^{23}$$
 J/K-mole
= 8.31174
≅ 8.312

So significant figures = 4