LIQUID SOLUTION

1. 50 mL of 0.2 molal urea solution (density $=1.012 \mathrm{~g} \mathrm{~mL}^{-1}$ at 300 K) is mixed with 250 mL of a solution containing 0.06 g of urea. Both the solutions were prepared in the same solvent. The osmotic pressure (in Torr) of the resulting solution at 300 K is \qquad _.
[JEE(Advanced) 2023]
[Use : Molar mass of urea $=60 \mathrm{~g} \mathrm{~mol}^{-1}$; gas constant, $\mathrm{R}=62 \mathrm{~L}^{\text {Torr }} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$; Assume, $\Delta_{\text {mix }} \mathrm{H}=0$, $\Delta_{\text {mix }} \mathrm{V}=0$]
2. An aqueous solution is prepared by dissolving 0.1 mol of an ionic salt in 1.8 kg of water at $35^{\circ} \mathrm{C}$. The salt remains 90% dissociated in the solution. The vapour pressure of the solution is 59.724 mm of Hg . Vapor pressure of water at $35{ }^{\circ} \mathrm{C}$ is 60.000 mm of Hg . The number of ions present per formula unit of the ionic salt is \qquad —.
[JEE(Advanced) 2022]

Question Stem for Question Nos. 3 and 4

The boiling point of water in a 0.1 molal silver nitrate solution (solution \mathbf{A}) is $\mathbf{x}^{\circ} \mathrm{C}$. To this solution \mathbf{A}, an equal volume of 0.1 molal aqueous barium chloride solution is added to make a new solution \mathbf{B}. The difference in the boiling points of water in the two solutions \mathbf{A} and \mathbf{B} is $\mathbf{y} \times 10^{-2}{ }^{\circ} \mathrm{C}$.
(Assume : Densities of the solutions \mathbf{A} and \mathbf{B} are the same as that of water and the soluble salts dissociate completely.)

Use: Molal elevation constant (Ebullioscopic Constant), $\mathrm{K}_{\mathrm{b}}=0.5 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$; Boiling point of pure water as $100^{\circ} \mathrm{C}$.)
3. The value of \mathbf{x} is \qquad .
[JEE(Advanced) 2021]
4. The value of $|\mathbf{y}|$ is \qquad .
[JEE(Advanced) 2021]
5. Liquids \mathbf{A} and \mathbf{B} form ideal solution for all compositions of \mathbf{A} and \mathbf{B} at $25^{\circ} \mathrm{C}$. Two such solutions with 0.25 and 0.50 mole fractions of \mathbf{A} have the total vapor pressures of 0.3 and 0.4 bar , respectively. What is the vapor pressure of pure liquid \mathbf{B} in bar?
[JEE(Advanced) 2020]
6. On dissolving 0.5 g of a non-volatile non-ionic solute to 39 g of benzene, its vapor pressure decreases from 650 mm Hg to 640 mm Hg . The depression of freezing point of benzene (in K) upon addition of the solute is \qquad .
(Given data : Molar mass and the molal freezing point depression constant of benzene are $78 \mathrm{~g} \mathrm{~mol}^{-1}$ and $5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, respectively)
[JEE(Advanced) 2019]
7. Liquids A and B form ideal solution over the entire range of composition. At temperature T, equimolar binary solution of liquids A and B has vapour pressure 45 Torr. At the same temperature, a new solution of A and B having mole fractions x_{A} and x_{B}, respectively, has vapour pressure of 22.5 Torr. The value of x_{A} / x_{B} in the new solution is \qquad .
(Given that the vapour pressure of pure liquid A is 20 Torr at temperature T)
[JEE(Advanced) 2018]
8. The plot given below shows $\mathrm{P}-\mathrm{T}$ curves (where P is the pressure and T is the temperature) for two solvents X and Y and isomolal solutions of NaCl in these solvents. NaCl completely dissociates in both the solvents.

On addition of equal number of moles a non-volatile solute S in equal amount (in kg) of these solvents, the elevation of boiling point of solvent X is three times that of solvent Y . Solute S is known to undergo dimerization in these solvents. If the degree of dimerization is 0.7 in solvent Y, the degree of dimerization in solvent X is \qquad _.
[JEE(Advanced) 2018]
9. For a solution formed by mixing liquids L and M, the vapour pressure of L plotted against the mole fraction of M in solution is shown in the following figure, Here x_{L} and x_{M} represent mole fractions of L and M , respectively, in the solution. the correct statement(s) applicable to this system is(are) -
[JEE(Advanced) 2017]

(A) Attractive intramolecular interactions between $\mathrm{L}-\mathrm{L}$ in pure liquid L and $\mathrm{M}-\mathrm{M}$ in pure liquid M are stronger than those between $\mathrm{L}-\mathrm{M}$ when mixed in solution
(B) The point Z represents vapour pressure of pure liquid M and Raoult's law is obeyed when $\mathrm{X}_{\mathrm{L}} \rightarrow 0$
(C) The point Z represents vapour pressure of pure liquid L and Raoult's law is obeyed when $\mathrm{X}_{\mathrm{L}} \rightarrow 1$
(D) The point Z represents vapour pressure of pure liquid M and Raoult's law is obeyed from $\mathrm{x}_{\mathrm{L}}=0$ to $\mathrm{X}_{\mathrm{L}}=1$
10. Pure water freezes at 273 K and 1 bar. The addition of 34.5 g of ethanol to 500 g of water changes the freezing point of the solution. Use the freezing point depression constant of water as $2 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}{ }^{-1}$. The figures shown below represents plots of vapour pressure (V.P.) versus temperature (T).
[Molecular weight of ethanol is $46 \mathrm{~g} \mathrm{~mol}^{-1}$]
Among the following, the option representing change in the freezing point is -
[JEE(Advanced) 2017]
(A)

(B)

(C)

(D)

11. Mixture(s) showing positive deviation from Raoult's law at $35^{\circ} \mathrm{C}$ is (are)
[JEE(Advanced) 2016]
(A) carbon tetrachloride + methanol
(B) carbon disulphide + acetone
(C) benzene + toluene
(D) phenol + aniline
12. If the freezing point of a 0.01 molal aqueous solution of a cobalt(III) chloride-ammonia complex (which behaves as a strong electrolyte) is $-0.0558^{\circ} \mathrm{C}$, the number of chloride(s) in the coordination sphere of the complex is
[K_{f} of water $=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$]
[JEE(Advanced) 2015]
13. $M X_{2}$ dissociates into M^{2+} and X^{-}ions in an aqueous solution, with a degree of dissociation (α) of 0.5 . The ratio of the observed depression of freezing point of the aqueous solution to the value of the depression of freezing point in the absence of ionic dissociation is
[JEE(Advanced) 2014]

SOLUTIONS

1. Ans. (682)

Sol. Weight of 50 ml 0.2 molal urea $=\mathrm{V} \times \mathrm{d}=50 \times 1.012=50.6 \mathrm{gm}$
Given 0.2 molal implies
1000 gm solvent has 0.2 moles urea
So weight of solution $=1000+0.2 \times 60=1012 \mathrm{gm}$.
So wt. of urea in 50.6 gm solution $=\frac{12 \times 50.6}{1012}=0.6 \mathrm{gm}$
Total urea $=0.6+0.06=0.66$ gm
Total volume $=300 \mathrm{ml}$
Now, osmotic pressure $\pi=\mathrm{C} \times \mathrm{R} \times \mathrm{T}=\frac{0.66 \times 62 \times 300}{60 \times 0.3}=682$ Torr.
2. Ans. (5)

Sol. 0.1 mole ionic salt in 1.8 kg water at $35^{\circ} \mathrm{C}$
Vapour pressure of solution $=59.724 \mathrm{~mm}$ of Hg
Vapour pressure of pure $\mathrm{H}_{2} \mathrm{O}=60.000 \mathrm{~mm}$ of Hg
Let the number of ions present per formula unit of the ionic salt be ' x '
$\mathrm{A}_{\mathrm{x}} \longrightarrow \quad \mathrm{xA}$
(Salt)
(Ions)
0.1
-
$0.1(1-0.9) \quad(0.1 \times 0.9) x$
Total moles of non-volatile particles $=0.01+0.09 \mathrm{x}$
in 1.8 kg water
Moles of water $=\frac{1.8 \times 10^{3}}{18}=100$ moles
Relative lowering of vapour pressure $\frac{\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}^{\circ}}=$ Mole fraction of non - volatile particles
$\frac{\mathrm{P}^{\circ}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{\mathrm{s}}}=\frac{\text { moles of non }- \text { volatile particles }}{\text { moles of water }}$
$\frac{60.000-59.724}{59.724}=\frac{0.01+0.09 \mathrm{x}}{100}$
$(0.276) \times 100=0.59274+(0.59274 \times 9) \mathrm{x}$
$27.6-0.59274=(0.59274 \times 9) x$
$\Rightarrow \mathrm{x} \simeq \frac{27}{0.6 \times 9}=5$
3. Ans. (100.10)

Sol. $\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$

$$
0.1 \mathrm{~m} \quad 0.1 \mathrm{~m}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=0.2 \times 0.5$

$$
=0.1^{\circ} \mathrm{C}=0.1 \mathrm{~K}
$$

Boiling point of solution $=100.1^{\circ} \mathrm{C}=\mathrm{X}$

4. Ans. (2.50)

Sol. $\mathrm{AgNO}_{3}(\mathrm{aq}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$

| 0.05 m |
| :---: | :--- |
| $\mathrm{BaCl}_{2}(\mathrm{aq})$ |
| 0.05 m |\longrightarrow| 0.05 m |
| :--- |
| $\mathrm{Ba}^{2+}(\mathrm{aq})$ |
| 0.05 m |$+$| 0.05 m |
| :--- |
| $2 \mathrm{Cl}^{-}(\mathrm{aq})$ |
| 0.1 m |

Ag^{+}and Cl^{-}combine to form AgCl precipitate

$$
\begin{array}{lcll}
& \mathrm{Ag}^{+}(\mathrm{aq}) & +\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow & \mathrm{AgCl}(\mathrm{~s}) \\
\mathrm{t}=0 & 0.05 \mathrm{~m} & 0.1 \mathrm{~m} \\
\mathrm{t}=\infty & 0 & 0.05 \mathrm{~m} &
\end{array}
$$

In final solution total concentration of all ions :
$\left[\mathrm{Cl}^{-}\right]+\left[\mathrm{NO}_{3}^{-}\right]+\left[\mathrm{Ba}^{2+}\right]=0.05+0.05+0.05$

$$
=0.15 \mathrm{~m}
$$

$\Delta \mathrm{T}_{\mathrm{b}}=0.5 \times 0.15$

$$
=0.075^{\circ} \mathrm{C}
$$

B.P. of solution ' B ' $=100.075^{\circ} \mathrm{C}$
B.P. of solution ' A ' $=100.1^{\circ} \mathrm{C}$
$|y|=100.1-100.075$

$$
=0.025=2.5 \times 10^{-2}
$$

5. Ans. (0.20)

Sol. $\quad P_{T}=P_{A}^{0} X_{A}+P_{B}^{o} X_{B}$
$0.3=\mathrm{P}_{\mathrm{A}}^{0} \times 0.25+\mathrm{P}_{\mathrm{B}}^{0} \times 0.75$
$0.4=\mathrm{P}_{\mathrm{A}}^{0} \times 0.5+\mathrm{P}_{\mathrm{B}}^{\mathrm{o}} \times 0.5$
$0.8=\mathrm{P}_{\mathrm{A}}^{\mathrm{o}}+\mathrm{P}_{\mathrm{B}}^{0}$
on solving eq ${ }^{\mathrm{n}}$ (i) \& (ii)
$\mathrm{P}_{\mathrm{A}}^{0}=0.6, \quad \mathrm{P}_{\mathrm{B}}^{0}=0.2$
6. Ans. ($\mathbf{0 . 9 7}$ to 1.06)

Sol. $\quad \frac{P^{0}-P_{s}}{P^{0}}=\frac{n_{\text {solute }}}{n_{\text {solute }}+n_{\text {solvent }}}$
$\frac{650-640}{650}=\frac{n_{\text {solute }}}{n_{\text {solute }}+0.5}$
$\mathrm{n}_{\text {solute }}=\left(\frac{5}{640}\right)$
Molality $=\frac{5 \times 1000}{640 \times 39}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{m} \times \mathrm{K}_{\mathrm{b}}$
$=\frac{5.12 \times 5 \times 1000}{640 \times 39}=1.0256$

$$
\Delta \mathrm{T}_{\mathrm{f}} \approx 1.03
$$

7. Ans. (19)

Sol. $\quad 45=P_{A}^{0} \times \frac{1}{2}+P_{B}^{0} \times \frac{1}{2}$

$$
\begin{equation*}
\mathrm{P}_{\mathrm{A}}^{0}+\mathrm{P}_{\mathrm{B}}^{\mathrm{o}}=90 \tag{1}
\end{equation*}
$$

Given $\mathrm{P}_{\mathrm{A}}^{0}=20$ torr
$\mathrm{P}_{\mathrm{B}}^{0}=70$ torr
$\Rightarrow 22.5$ torr $=20 x_{A}+70\left(1-x_{A}\right)=70-50 x_{A}$
$\mathrm{x}_{\mathrm{A}}=\left(\frac{70-22.5}{50}\right)=0.95$
$\mathrm{x}_{\mathrm{B}}=0.05$
So $\frac{\mathrm{x}_{\mathrm{A}}}{\mathrm{x}_{\mathrm{B}}}=\frac{0.95}{0.05}=19$
8. Ans. (0.05)

Sol. From graph
For solvent $X^{\prime} \quad \Delta \mathrm{T}_{\mathrm{bx}}=2$
$\Delta \mathrm{T}_{\mathrm{bx}}=\mathrm{m}_{\mathrm{NaCl}} \times \mathrm{K}_{\mathrm{b}(\mathrm{x})}$
For solvent ' $\mathrm{Y}^{\prime} \quad \Delta \mathrm{T}_{\text {by }}=1$
$\Delta \mathrm{T}_{\mathrm{b}(\mathrm{y})}=\mathrm{m}_{\mathrm{NaCl}} \times \mathrm{K}_{\mathrm{b}(\mathrm{y})}$
Equation (1)/(2)
$\Rightarrow \frac{\mathrm{K}_{\mathrm{b}(\mathrm{x})}}{\mathrm{K}_{\mathrm{b}(\mathrm{y})}}=2$
For solute S
$\underset{\substack{1-\alpha}}{2(\mathrm{~S})} \rightarrow \underset{\alpha / 2}{\mathrm{~S}_{2}}$
$\mathrm{i}=(1-\alpha / 2)$
$\Delta \mathrm{T}_{\mathrm{b}(\mathrm{x})(\mathrm{s})}=\left(1-\frac{\alpha_{1}}{2}\right) \mathrm{K}_{\mathrm{b}(\mathrm{x})}$
$\Delta \mathrm{T}_{\mathrm{b}(\mathrm{y})(\mathrm{s})}=\left(1-\frac{\alpha_{2}}{2}\right) \mathrm{K}_{\mathrm{b}(\mathrm{y})}$
Given $\Delta \mathrm{T}_{\mathrm{b}(\mathrm{x})(\mathrm{s})}=3 \Delta \mathrm{~T}_{\mathrm{b}(\mathrm{y})(\mathrm{s})}$
$\left(1-\frac{\alpha_{1}}{2}\right) \mathrm{K}_{\mathrm{b}(\mathrm{x})}=3 \times\left(1-\frac{\alpha_{2}}{2}\right) \times \mathrm{k}_{\mathrm{b}(\mathrm{y})}$
$2\left(1-\frac{\alpha_{1}}{2}\right)=3\left(1-\frac{\alpha_{2}}{2}\right)$
$\alpha_{2}=0.7$
so $\alpha_{1}=0.05$
9. Ans. (A, C)

Sol. (A) This is case of positive deviation hence

$$
\mathrm{F}_{\mathrm{L}-\mathrm{L}}, \mathrm{~F}_{\mathrm{M}-\mathrm{M}}>\mathrm{F}_{\mathrm{L}-\mathrm{M}}
$$

(C) $\mathrm{P}_{\mathrm{L}} \geq \mathrm{P}_{\mathrm{L}}{ }^{0} \mathrm{X}_{\mathrm{L}}$
but when $\mathrm{X}_{\mathrm{L}} \rightarrow 1$, mixture has almost pure liquid L so, $\mathrm{P}_{\mathrm{L}} \rightarrow \mathrm{P}_{\mathrm{L}}{ }^{0}$
10. Ans. (D)

Sol. Ethanol should be considered non volatile as per given option
$\Delta T_{f}=K_{f} \times m$
$\Delta \mathrm{T}_{\mathrm{f}}=2 \times \frac{34.5}{46 \times 0.5}=3 \mathrm{~K}$
$\mathrm{T}_{\mathrm{f}}{ }^{0}=273 \mathrm{~K}$
$\mathrm{T}_{\mathrm{f}}=270 \mathrm{~K}$

11. Ans. (A, B)

Sol. (A) H -bonding of methanol breaks when CCl_{4} is added so bonds become weaker, resulting positive deviation.
(B) Mixing of polar and non-polar liquids will produce a solution of weaker interaction, resulting positive deviation
(C) Ideal solution
(D) -ve deviation because stronger H -bond is formed
12. Ans. (1)

Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \mathrm{K}_{\mathrm{f}} \mathrm{m}$
$0.0558=\mathrm{i} \times 1.86 \times 0.01$
$\Rightarrow \mathrm{i}=3$
Structure should be :
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
13. Ans. (2)

Sol. $\mathrm{MX}_{2} \longrightarrow \mathrm{M}^{2+}+2 \mathrm{X}^{-}$

$$
\begin{aligned}
& \frac{\left(\Delta T_{f}\right)_{\text {observed }}}{\left(\Delta T_{f}\right)_{\text {Theoretical }}}=i=1+\alpha(n-1) \\
& \therefore \quad i=1+0.5(3-1) \\
& i=2
\end{aligned}
$$

