PHYSICAL CHEMISTRY

ELECTROCHEMISTRY

1. Plotting $1/\Lambda_m$ against $c\Lambda_m$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y-axis intercept of P and slope of S. The ratio P/S is [JEE(Advanced) 2023]

 $[\Lambda_{\rm m} = {\rm molar\ conductivity}]$

 $\Lambda_m^{\circ} = limiting \ molar \ conductivity$

c = molar concentration

 K_a = dissociation constant of HX]

- (A) $K_a \Lambda_m^{\circ}$
- (B) $K_a \Lambda_m^{\circ} / 2$ (C) $2 K_a \Lambda_m^{\circ}$ (D) $1 / (K_a \Lambda_m^{\circ})$
- The reduction potential (E^0 , in V) of MnO_4^- (aq)/Mn(s) is _____. 2.

[JEE(Advanced) 2022]

$$[Given: \ E^0_{\left(MnO_4^-\left(aq\right)/MnO_2\left(s\right)\right)} = 1.68 \ V \ ; \ E^0_{\left(MnO_2\left(s\right)/Mn^{2+}\left(aq\right)\right)} = 1.21 \ V \ ; \ E^0_{\left(Mn^{2+}\left(aq\right)/Mn\left(s\right)\right)} = -1.03 \ V \]$$

Consider the strong electrolytes $Z_m X_n$, $U_m Y_p$ and $V_m X_n$. Limiting molar conductivity (Λ^0) of $U_m Y_p$ and **3.** V_mX_n are 250 and 440 S cm² mol⁻¹, respectively. The value of (m + n + p) is _____. Given:

Ion	Z^{n+}	U^{p+}	V^{n+}	X^{m-}	Y^{m-}
λ^0 (S cm ² mol ⁻¹)	50.0	25.0	100.0	80.0	100.0

 λ^0 is the limiting molar conductivity of ions

The plot of molar conductivity (A) of $Z_m X_n vs c^{1/2}$ is given below.

[JEE(Advanced) 2022]

4. The correct option(s) about entropy (S) is(are) [JEE(Advanced) 2022]

 $[R = gas\ constant,\ F = Faraday\ constant,\ T = Temperature]$

- (A) For the reaction, $M(s) + 2H^{+}(aq) \rightarrow H_{2}(g) + M^{2+}(aq)$, if $\frac{dE_{cell}}{dT} = \frac{R}{F}$, then the entropy change of the reaction is R (assume that entropy and internal energy changes are temperature independent).
- (B) The cell reaction, $Pt(s) \mid H_2(g, 1bar) \mid H^+(aq, 0.01M) \parallel H^+(aq, 0.1M) \mid H_2(g, 1bar) \mid Pt(s)$, is an entropy driven process.
- (C) For racemization of an optically active compound, $\Delta S > 0$.
- (D) $\Delta S > 0$, for $[Ni(H_2O)_6]^{2+} + 3$ en $\rightarrow [Ni(en)_3]^{2+} + 6H_2O$ (where en = ethylenediamine).

5. Some standard electrode potentials at 298 K are given below:

[JEE(Advanced) 2021

To a solution containing 0.001 M of \mathbf{X}^{2+} and 0.1 M of \mathbf{Y}^{2+} , the metal rods \mathbf{X} and \mathbf{Y} are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of \mathbf{X} . The correct combination(s) of \mathbf{X} and \mathbf{Y} , respectively, is (are)

(Given: Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$,

Faraday constant, $F = 96500 \text{ C mol}^{-1}$)

(A) Cd and Ni

(B) Cd and Fe

(C) Ni and Pb

(D) Ni and Fe

Question Stem for Question Nos. 6 and 7

Question Stem

At 298 K, the limiting molar conductivity of a weak monobasic acid is 4×10^2 S cm² mol⁻¹. At 298 K, for an aqueous solution of the acid the degree of dissociation of α and the molar conductivity is $y \times 10^2$ S cm² mol⁻¹. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes $3y \times 10^2$ S cm² mol⁻¹.

6. The value of α is _____.

[JEE(Advanced) 2021]

7. The value of **y** is _____.

[JEE(Advanced) 2021]

8. Consider a 70% efficient hydrogen-oxygen fuel cell working under standard conditions at 1 bar and 298K. Its cell reaction is [JEE(Advanced) 2020]

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(\ell).$$

The work derived from the cell on the consumption of 1.0×10^{-3} mol of $H_2(g)$ is used to compress 1.00 mol of a monoatomic ideal gas in a thermally insulted container. What is the change in the temperature (in K) of the ideal gas ?

The standard reduction potentials for the two half-cells are given below.

$$O_2(g) + 4 H^+ (aq.) + 4e^- \rightarrow 2H_2O(\ell)$$
, $E^0 = 1.23 V$,

$$2H^{+}$$
 (aq.) + $2e^{-} \rightarrow H_{2}(g)$, $E^{o} = 0.00V$.

Use
$$F = 96500 \text{ C mol}^{-1}$$
, $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$

9. For the electrochemical cell,

[JEE(Advanced) 2018]

$$Mg(s)|Mg^{2+}(aq, 1M)||Cu^{2+}(aq, 1M)||Cu(s)|$$

the standard emf of the cell is 2.70 V at 300 K. When the concentration of Mg^{2+} is changed to x M, the cell potential changes to 2.67 V at 300 K. The value of x is_____.

(given,
$$\frac{F}{R} = 11500 \text{ KV}^{-1}$$
, where F is the Faraday constant and R is the gas constant, $\ln(10) = 2.30$)

- 10. Consider an electrochemical cell: $A(s) \mid A^{n+}$ (aq, 2M) $\parallel B^{2n+}$ (aq, 1M) $\mid B(s)$. The value of ΔH^{θ} for the cell reaction is twice that of ΔG^{θ} at 300 K. If the emf of the cell is zero, the ΔS^{θ} (in JK^{-1} mol⁻¹) of the cell reaction per mole of B formed at 300 K is_____.
 - (Given: $\ln (2) = 0.7$, R (universal gas constant) = 8.3 J K⁻¹ mol⁻¹. H, S and G are enthalpy, entropy and Gibbs energy, respectively.) [**JEE(Advanced) 2018**]

ALLEN®

11. The conductance of a 0.0015 M aqueous solution of a weak monobasic acid was determined by using a conductivity cell consisting of platinized Pt electrodes. The distance between the electrodes is 120 cm with an area of cross section of 1 cm². The conductance of this solution was found to be 5×10^{-7} S. The pH of the solution is 4. The value of limiting molar conductivity (Λ_m^0) of this weak monobasic acid in aqueous solution is $Z \times 10^2$ S cm⁻¹mol⁻¹. The value of Z is. [JEE(Advanced) 2017]

12. For the following cell:

[JEE(Advanced) 2017]

$$Zn(s) \mid ZnSO_4 (aq.) \parallel CuSO_4 (aq.) \mid Cu(s)$$

when the concentration of Zn^{2+} is 10 times the concentration of Cu^{2+} , the expression for ΔG (in $\ J \ mol^{-1}$) is

[F is Faraday constant, R is gas constant, T is temperature, $E^{\circ}(cell) = 1.1V$]

(A) 2.303 RT + 1.1F

(B) 2.303 RT - 2.2F

(C) 1.1 F

(D) -2.2 F

13. For the following electrochemical cell at 298K,

[JEE(Advanced) 2016]

$$Pt(s) \mid H_2(g,\,1bar) \mid H^+ \, (aq,\,1M) \parallel M^{4+} (aq.),\, M^{2+} (aq.) \mid Pt(s)$$

$$E_{cell} = 0.092 \ V \ when \ \frac{[M^{2+}(aq.)]}{[M^{4+}(aq.)]} = 10^x$$

Given:
$$E_{M^{4+}/M^{2+}}^{0} = 0.151V$$
; 2.303 $\frac{RT}{F} = 0.059$

The value of x is -

(A) -2

(B) -1

(C) 1

(D) 2

14. All the energy released from the reaction $X \to Y$, $\Delta_r G^o = -193 \text{ kJ mol}^{-1}$ is used for the oxidizing M^+ and $M^+ \to M^{3+} + 2e^-$, $E^o = -0.25 \text{ V}$.

Under standard conditions, the number of moles of M^+ oxidized when one mole of X is converted to Y is $[F = 96500 \text{ C mol}^{-1}]$ [JEE(Advanced) 2015]

15. The molar conductivity of a solution of a weak acid HX (0.01 M) is 10 times smaller than the molar conductivity of a solution of a weak acid HY (0.1 M). If $\lambda^0_{X^-} \approx \lambda^0_{Y^-}$, the difference in their pK_a values, pK_a(HX) – pK_a(HY), is (consider degree of ionization of both acids to be <<1).

[JEE(Advanced) 2015]

16. In a galvanic cell, the salt bridge -

[JEE(Advanced) 2014]

- (A) Does not participate chemically in the cell reaction
- (B) Stops the diffusion of ions from one electrode to another
- (C) Is necessary for the occurence of the cell reaction
- (D) Ensures mixing of the two electrolytic solutions

SOLUTIONS

1. Ans. (A)

Sol. For weak acid,
$$\alpha = \frac{\Lambda_m}{\Lambda_0}$$

$$K_a = \frac{C\alpha^2}{1-\alpha} \Rightarrow K_a (1-\alpha) = C\alpha^2$$

$$\Rightarrow K_a \left(1 - \frac{\Lambda_m}{\Lambda_0} \right) = C \left(\frac{\Lambda_m}{\Lambda_0} \right)^2$$

$$\Rightarrow K_a - \frac{\Lambda_m K_a}{\Lambda_0} = \frac{C \Lambda_m^2}{(\Lambda_0)^2}$$

Divide by $\,{}^{\backprime}\Lambda_m\,{}^{\backprime}$

$$\Rightarrow \frac{K_a}{\Lambda_m} = \frac{C\Lambda_m}{(\Lambda_0)^2} + \frac{K_a}{\Lambda_0}$$

$$\Rightarrow \frac{1}{\Lambda_{\rm m}} = \frac{C\Lambda_{\rm m}}{K_{\rm a}(\Lambda_0)^2} + \frac{1}{\Lambda_0}$$

Plot
$$\frac{1}{\Lambda_m}$$
 vs $C\Lambda_m$ has

Slope =
$$\frac{1}{K_o(\Lambda_0)^2} = S$$

$$y\text{-intercept} = \frac{1}{\Lambda_0} = P$$

Then,
$$\frac{P}{S} = \frac{\frac{1}{\Lambda_0}}{\frac{1}{K_a(\Lambda_0)^2}} = K_a \Lambda_0$$

2. Ans. (0.74 - 0.80)

Sol.
$$\stackrel{+7}{M} nO_4^- \xrightarrow{(3)} \stackrel{+4}{M} nO_2 \xrightarrow{(2)} Mn^{+2} \xrightarrow{(2)} Mn$$

For the required reaction $\Delta G^{\circ} = \Delta G^{\circ}_{1} + \Delta G^{\circ}_{2} + \Delta G^{\circ}_{3}$

$$\Rightarrow$$
 7 × E = 1.68 × 3 + 1.21 × 2 + (-1.03) × 2

$$E = \frac{5.4}{7} = 0.7714$$

Ans.
$$= 0.77$$

ALLEN®

3. Ans. (7)

Sol.
$$\Lambda^{\circ}(U_m Y_p) = m \times \lambda^{\circ}_{U^{p^+}} + p \times \lambda^{\circ}_{Y^{m-}} = 250$$

$$25m + 100p = 250$$

$$m + 4p = 10$$

$$\Lambda^{\circ} (V_m X_n) = m \times \lambda_{V^{n+}} + n \times \lambda_{X^{m-}}^{\circ} = 440$$

$$100m + 80n = 440$$

$$5m + 4n = 22$$
(2)

....(1)

....(3)

From the extrapolation of curve

$$\Lambda^{\circ}(Z_m X_n) = 340$$

$$m \times \lambda_{Z^{n+}}^{\circ} + n \lambda_{X^{m-}}^{\circ} = 340$$

$$50m + 80n = 340$$

$$5m + 8n = 34$$

$$(3)$$
 $-(2)$ \Rightarrow $4n = 12 \Rightarrow n = 3$

Putting in (2) we get m = 2

Putting in (1) we get p = 2

$$m + n + p = 2 + 3 + 2 = 7$$

4. Ans. (B, C, D)

Sol.
$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G = \Delta H + T \left(\frac{d\Delta G}{dT} \right)_{D}$$

$$-nF\left(\frac{dE_{cell}}{dT}\right)=\!\!-\!\Delta S$$

$$\frac{dE_{cell}}{dT} = \frac{\Delta S}{nF} = \frac{R}{F} (given)$$

$$\Rightarrow \Delta S = nR$$

For the reaction, $M(g) + 2H^{\oplus}(aq) \longrightarrow H_2(g) + M^{2\oplus}(aq)$

$$n = 2$$

$$\Rightarrow \Delta S = 2R$$

Hence, option (A) is incorrect

For the reaction, $Pt_{(s)} | H_{2(g)}$, 1 bar $| H^{\oplus}_{aq}(0.01M) | H^{\oplus}(aq, 0.1M) | H_{2}(g, 1 \text{ bar}) | Pt_{(s)}$

$$E_{cell} = E_{cell}^{\circ} - \frac{0.0591}{1} log \frac{0.01}{0.1} = 0.0591V$$

 E_{cell} is positive $\Rightarrow \Delta G < 0$ and $\Delta S > 0$ ($\Delta H = 0$ for concentration cells)

Hence, option (B) is correct

Racemization of an optically active compound is a spontaneous process.

Here, $\Delta H = 0$ (similar type of bonds are present in enantiomers)

$$\Rightarrow \Delta S > 0$$

Hence, option (C) is correct.

$$\left[\text{Ni}\left(\text{H}_2\text{O}\right)_6\right]^{2+} + 3 \text{ en } \rightarrow \left[\text{Ni}\left(\text{en}\right)_3\right]^{2+} + 6\text{H}_2\text{O} \text{ is a spontaneous process}$$

more stable complex is formed

$$\Rightarrow \Delta S > 0$$

Hence, option (D) is correct.

5. Ans. (A, B, C)

Sol.
$$x(s) \longrightarrow x^{+2} (0.001 \text{ M}) + 2e^{-} (\text{anode})$$

$$y^{+2}$$
 (0.1 M) + 2e⁻ \longrightarrow y (s) (cathode)

$$E_{cell} = E^{\circ}_{cell} \; - \frac{0.06}{2} \; \; log \; \frac{x^{^{+2}}}{y^{^{+2}}}$$

$$E_{cell} = E^{\circ}_{cell} + 0.06$$

(A) Cd and Ni
$$E^{\circ}_{cell} = +0.4 - 0.24$$
; $E_{cell} = 0.22$

(B) Cd and Fe
$$E_{cell}^{\circ} = -0.04$$
; $E_{cell} = 0.02$

(C) Ni and Pb
$$E^{\circ}_{cell} = 0.11$$
; $E_{cell} = 0.17$

(D) Ni and Fe
$$E^{\circ}_{cell} = -0.2$$
; $E_{cell} = -0.14$

since in (A) (B) (C) E_{cell} is positive hence answer is (A) (B) (C).

6. Ans. (0.21 or 0.22)

Sol.
$$K_a = \frac{\Lambda_m^2 C}{\Lambda_m^{\circ} \left(\Lambda_m^{\circ} - \Lambda_m\right)}$$

$$K_{a} = \frac{(y \times 10^{2})^{2} \times C}{4 \times 10^{2} (4 \times 10^{2} - y \times 10^{2})} = \frac{(3y \times 10^{2})^{2} \times \frac{C}{20}}{4 \times 10^{2} (4 \times 10^{2} - 3y \times 10^{2})}$$

$$\Rightarrow \frac{1}{(4-y)} = \frac{9}{20(4-3y)} \Rightarrow y = \frac{44}{51}$$

$$\alpha = \frac{\frac{44}{51} \times 10}{4 \times 10^2}$$

$$\alpha = 0.2156 \ (\alpha = 0.22 \ \text{or} \ 0.21)$$

$$y = 0.86$$

- 7. Ans. (0.86)
- 8. Ans. (13.00 13.60)

Sol.
$$E_{cell}^0 = 1.23 - 0.00 = 1.23 \text{ V}$$

$$\Delta G_{cell}^{0} = -nF E_{cell}^{0} = -2 \times 96500 \times 1.23 J$$

: Work derived from this fuel cell

$$=\frac{70}{100} \times \left(-\Delta G_{cell}^{0}\right) \times 10^{-3} = xJ$$

Since insulated vessel, hence q = 0

From equation, for monoatomic gas,

$$w = \Delta U \qquad \Rightarrow \qquad x = n C_{V,m} \Delta T \left\{ C_{V,m} = \frac{3R}{2} \right\}$$

or,
$$\frac{70}{100} \times (2 \times 96500 \times 1.23) \times 10^{-3} = 1 \times \frac{3}{2} \times 8.314 \times \Delta T$$

$$\Delta T = 13.32$$

9. Ans. (10)

Sol.
$$Mg(s) + Cu^{2+}(aq) \longrightarrow Mg^{2+}(aq) + Cu(s)$$

$$E^{\circ}_{Cell} = 2.70$$
 $E_{Cell} = 2.67$ $Mg^{2+} = x M$ $Cu^{2+} = 1 M$

$$E_{Cell} = E^{\circ}_{Cell} - \frac{RT}{nF} ln x$$

$$2.67 = 2.70 - \frac{RT}{2F} \ln x$$

$$-0.03 = -\frac{R \times 300}{2F} \times \ln x$$

$$lnx = \frac{0.03 \times 2}{300} \times \frac{F}{R} = \frac{0.03 \times 2 \times 11500}{300 \times 1}$$

$$lnx = 2.30 = ln(10)$$

$$x = 10$$

10. Ans. (-11.62)

$$\textbf{Sol.} \quad A(s) \mid A^{+n} \ (aq, \, 2M) \parallel B^{+2n} \ (aq, \, 1M) \mid B(s)$$

$$\Delta H^{\circ} = 2\Delta G^{\circ}_{0} \qquad \qquad E_{cell} = 0$$

Cell Rx
$$A \rightarrow A^{+n} + ne^{-}] \times 2$$

$$B^{+2n} + 2n e^{-} \rightarrow B(s)$$

$$2A(s) + B_{1M}^{+2n}(aq) \rightarrow 2A_{2M}^{+n}(aq) + B(s)$$

$$\Delta G = \Delta G^{\circ} + RT \ln \frac{\left[A^{+n}\right]^{2}}{\left[B^{+2n}\right]}$$

$$\Delta G^{\circ} = -RT \ln \frac{\left[A^{+n}\right]^2}{\left[B^{+2n}\right]} = -RT. \ln \frac{2^2}{1} = -RT. \ln 4$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$\Delta G^{\circ} = 2\Delta G^{\circ} - T\Delta S^{\circ}$$

$$\Delta S^{\circ} = \frac{\Delta G^{\circ}}{T} = -\frac{RT \ln 4}{T} = -8.3 \times 2 \times 0.7 = -11.62 \text{ J/K.mol}$$

11. Ans. (6)

Sol. For weak acid
$$[H^+] = c\alpha = c\frac{\Lambda_m^C}{\Lambda_m^\infty} = c \times \frac{\kappa \times \frac{1000}{c}}{\Lambda_m^\infty} = \frac{\kappa \times 1000}{\Lambda_m^\infty} = \frac{G \times \left(\frac{l}{a}\right) \times 1000}{\Lambda_m^\infty}$$

$$10^{-4} = \frac{5 \times 10^{-7} \times \left(\frac{120}{1}\right) \times 1000}{Z \times 10^{2}} \Rightarrow Z = 6$$

12. Ans. (B)

Sol.
$$\Delta G = \Delta G^0 + 2.303RT \log Q$$

$$\Delta G = -nFE^0 + 2.303RT \log Q$$

Given:
$$E^{\circ} = 1.1 \text{ V}$$
 and $n = 2$

$$\Delta G = (-2 \times 1.1 \times F) + 2.303 RT \ log[\frac{[Zn^{+2}]}{Cu^{+2}}]$$

$$\Delta G = -2.2 \text{ F} + 2.303 \text{RT}$$

13. Ans. (D)

Sol. At anode:
$$H_2(g) = 2H^+(aq) + 2e^-$$

At cathode:
$$M^{4+}(aq) + 2e^- \longrightarrow M^{2+}(aq)$$

Net cell reaction :
$$H_2(g) + M^{4+}$$
 (aq) \rightleftharpoons $2H^+$ (aq) $+ M^{2+}$ (aq)

Now,
$$E_{cell} = \left(E_{M^{4+}/M^{2+}}^{\circ} - E_{H^{+}/H_{2}}^{\circ}\right) - \frac{0.059}{n} \cdot log \frac{\left[H^{+}\right]^{2} \left[M^{2+}\right]}{P_{H_{2}} \cdot \left[M^{4+}\right]}$$

or,
$$0.092 = (0.151 - 0) - \frac{0.059}{2} \cdot \log \frac{1^2 \times [M^{2+}]}{1 \times [M^{4+}]}$$

$$\therefore \frac{\left[M^{2+}\right]}{\left[M^{4+}\right]} = 10^2 \implies x = 2$$

14. Ans. (4)

Sol.
$$|\Delta G| = -nFE$$

$$193 \times 10^3 = x \times 2 \times 96500 \times 0.25$$

(where x is the number of moles of M⁺ oxidised)

$$x = 4$$

15. Ans. (3)

$$\begin{split} &\textbf{Sol.} \quad \Lambda_m(\textbf{HX}) = \frac{x}{10} \qquad \quad \Lambda_m(\textbf{HY}) = x \\ &\frac{\Lambda_m(\textbf{HX}) / \Lambda_m^0(\textbf{HX})}{\Lambda_m(\textbf{HY}) / \Lambda_m^0(\textbf{HY})} = \frac{(x / 10) / \Lambda_m^0(\textbf{HX})}{x / \Lambda_m^0(\textbf{HY})} = \frac{\alpha_1}{\alpha_2} = \frac{1}{10} \\ &\textbf{HX} \quad \Longrightarrow \quad \textbf{H}^+ \quad + \quad \textbf{X}^- \quad \qquad | \quad \textbf{HY} \quad \Longrightarrow \quad \textbf{H}^+ \quad + \quad \textbf{Y}^- \\ &0.01 \quad \quad - \quad \quad - \quad \quad \\ &0.01 (1 - \alpha_1) \quad 0.01 \ \alpha_1 \quad 0.01 \ \alpha_1 \quad 0.01 \ \alpha_1 \quad 0.1(1 - \alpha_2) \quad 0.1 \ \alpha_2 \quad 0.1 \ \alpha_2 \\ &K_{a_1} = 0.01 \alpha_1^2 \quad K_{a_2} = 0.1 \alpha_2^2 \\ &\frac{K_{a_1}}{K_{a_2}} = \frac{1}{10} \cdot \frac{\alpha_1^2}{\alpha_2^2} = \frac{1}{1000} \\ &\log K_{a1} - \log K_{a2} = 3 \end{split}$$

- 16. Ans. (A, B)
- **Sol. Note**: We feel option (C) is incorrect because in some type of concentration cells, salt bridge is not required. Which can be confirmed from NCERT (XII-Chemistry, Part-1) in Sub section 3.2 Galvanic Cell. "The electrolytes of the two half-cells are connected internally through a salt bridge as shown in Fig. 3.1. Sometimes, both the electrodes dip in the same electrolyte solution and in such cases we do not require a salt bridge."