ELECTROCHEMISTRY

1. Plotting $1 / \Lambda_{\mathrm{m}}$ against $\mathrm{c} \Lambda_{\mathrm{m}}$ for aqueous solutions of a monobasic weak acid (HX) resulted in a straight line with y -axis intercept of P and slope of S . The ratio P / S is
[JEE(Advanced) 2023]
[$\Lambda_{\mathrm{m}}=$ molar conductivity
$\Lambda_{\mathrm{m}}^{\circ}=$ limiting molar conductivity
$\mathrm{c}=$ molar concentration
$\mathrm{K}_{\mathrm{a}}=$ dissociation constant of HX]
(A) $\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}$
(B) $K_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ} / 2$
(C) $2 \mathrm{~K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}$
(D) $1 /\left(\mathrm{K}_{\mathrm{a}} \Lambda_{\mathrm{m}}^{\circ}\right)$
2. The reduction potential $\left(E^{0}\right.$, in V$)$ of $\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{Mn}(\mathrm{s})$ is \qquad .
[JEE(Advanced) 2022]
[Given : $\mathrm{E}_{\left(\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{MnO}_{2}(\mathrm{~s})\right)}^{0}=1.68 \mathrm{~V} ; \mathrm{E}_{\left(\mathrm{MnO}_{2}(\mathrm{~s}) / \mathrm{Mn}^{2+(a q)}\right)}^{0}=1.21 \mathrm{~V} ; \mathrm{E}_{\left(\mathrm{Mn}^{2+}(\mathrm{aq}) / \mathrm{Mn}^{(s)}\right)}^{0}=-1.03 \mathrm{~V}$]
3. Consider the strong electrolytes $Z_{m} X_{n}, U_{m} Y_{p}$ and $V_{m} X_{n}$. Limiting molar conductivity (Λ^{0}) of $U_{m} Y_{p}$ and $V_{m} X_{n}$ are 250 and $440 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively. The value of $(m+n+p)$ is \qquad .

Given:

Ion	$\mathrm{Z}^{\mathrm{n}+}$	$\mathrm{U}^{\mathrm{p}+}$	$\mathrm{V}^{\mathrm{n}+}$	$\mathrm{X}^{\mathrm{m}-}$	$\mathrm{Y}^{\mathrm{m}-}$
$\lambda^{0}\left(\mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}\right)$	50.0	25.0	100.0	80.0	100.0

λ^{0} is the limiting molar conductivity of ions
The plot of molar conductivity (Λ) of $\mathrm{Z}_{\mathrm{m}} \mathrm{X}_{\mathrm{n}}$ vs $\mathrm{c}^{1 / 2}$ is given below.
[JEE(Advanced) 2022]

4. The correct option(s) about entropy (S) is(are)
[JEE(Advanced) 2022]
[$\mathrm{R}=$ gas constant, $\mathrm{F}=$ Faraday constant, $\mathrm{T}=$ Temperature]
(A) For the reaction, $\mathrm{M}(s)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{H}_{2}(g)+\mathrm{M}^{2+}(a q)$, if $\frac{\mathrm{dE}_{\text {cell }}}{\mathrm{dT}}=\frac{\mathrm{R}}{\mathrm{F}}$, then the entropy change of the reaction is R (assume that entropy and internal energy changes are temperature independent).
(B) The cell reaction, $\operatorname{Pt}(s)\left|\mathrm{H}_{2}(g, 1 \mathrm{bar})\right| \mathrm{H}^{+}(a q, 0.01 \mathrm{M}) \| \mathrm{H}^{+}(a q, 0.1 \mathrm{M})\left|\mathrm{H}_{2}(g, 1 \mathrm{bar})\right| \operatorname{Pt}(s)$, is an entropy driven process.
(C) For racemization of an optically active compound, $\Delta \mathrm{S}>0$.
(D) $\Delta \mathrm{S}>0$, for $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3$ en $\rightarrow\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$ (where en $=$ ethylenediamine).
5. Some standard electrode potentials at 298 K are given below:
$\mathrm{Pb}^{2+} / \mathrm{Pb}$
$\mathrm{Ni}^{2+} / \mathrm{Ni}$
$\mathrm{Cd}^{2+} / \mathrm{Cd}$
$-0.24 \mathrm{~V}$
$\mathrm{Fe}^{2+} / \mathrm{Fe}$

To a solution containing 0.001 M of \mathbf{X}^{2+} and 0.1 M of \mathbf{Y}^{2+}, the metal rods \mathbf{X} and \mathbf{Y} are inserted (at 298 K) and connected by a conducting wire. This resulted in dissolution of \mathbf{X}. The correct combination(s) of \mathbf{X} and \mathbf{Y}, respectively, is (are)
(Given: Gas constant, $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$,
Faraday constant, $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$)
(A) Cd and Ni
(B) Cd and Fe
(C) Ni and Pb
(D) Ni and Fe

Question Stem for Question Nos. 6 and 7

Question Stem

At 298 K , the limiting molar conductivity of a weak monobasic acid is $4 \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. At 298 K , for an aqueous solution of the acid the degree of dissociation of $\boldsymbol{\alpha}$ and the molar conductivity is $\mathbf{y} \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. At 298 K , upon 20 times dilution with water, the molar conductivity of the solution becomes $3 \mathbf{y} \times 10^{2} \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.
6. The value of α is \qquad .
[JEE(Advanced) 2021]
7. The value of \mathbf{y} is \qquad .
[JEE(Advanced) 2021]
8. Consider a 70% efficient hydrogen-oxygen fuel cell working under standard conditions at 1 bar and 298 K . Its cell reaction is
[JEE(Advanced) 2020]

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)
$$

The work derived from the cell on the consumption of $1.0 \times 10^{-3} \mathrm{~mol}$ of $\mathrm{H}_{2}(\mathrm{~g})$ is used to compress 1.00 mol of a monoatomic ideal gas in a thermally insulted container. What is the change in the temperature (in K) of the ideal gas ?
The standard reduction potentials for the two half-cells are given below.
O_{2} (g) $+4 \mathrm{H}^{+}$(aq.) $+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell), \mathrm{E}^{\mathrm{o}}=1.23 \mathrm{~V}$,
$2 \mathrm{H}^{+}$(aq.) $+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}), \mathrm{E}^{\mathrm{o}}=0.00 \mathrm{~V}$.
Use $\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}, \mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
9. For the electrochemical cell,
[JEE(Advanced) 2018]
$\mathrm{Mg}(\mathrm{s})\left|\mathrm{Mg}^{2+}(\mathrm{aq}, 1 \mathrm{M}) \| \mathrm{Cu}^{2+}(\mathrm{aq}, 1 \mathrm{M})\right| \mathrm{Cu}(\mathrm{s})$
the standard emf of the cell is 2.70 V at 300 K . When the concentration of Mg^{2+} is changed to x M , the cell potential changes to 2.67 V at 300 K . The value of x is \qquad .
(given, $\frac{F}{R}=11500 \mathrm{KV}^{-1}$, where F is the Faraday constant and R is the gas constant, $\ln (10)=2.30$)
10. Consider an electrochemical cell: $A(s)\left|A^{n+}(a q, 2 M) \| B^{2 n+}(a q, 1 M)\right| B(s)$. The value of ΔH^{θ} for the cell reaction is twice that of $\Delta \mathrm{G}^{\theta}$ at 300 K . If the emf of the cell is zero, the $\Delta \mathrm{S}^{\theta}$ (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) of the cell reaction per mole of B formed at 300 K is
(Given $: \ln (2)=0.7$, R (universal gas constant) $=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} . \mathrm{H}, \mathrm{S}$ and G are enthalpy, entropy and Gibbs energy, respectively.)
[JEE(Advanced) 2018]
11. The conductance of a 0.0015 M aqueous solution of a weak monobasic acid was determined by using a conductivity cell consisting of platinized Pt electrodes. The distance between the electrodes is 120 cm with an area of cross section of $1 \mathrm{~cm}^{2}$. The conductance of this solution was found to be $5 \times 10^{-7} \mathrm{~S}$. The pH of the solution is 4 . The value of limiting molar conductivity $\left(\Lambda_{\mathrm{m}}^{0}\right)$ of this weak monobasic acid in aqueous solution is $\mathrm{Z} \times 10^{2} \mathrm{~S} \mathrm{~cm}^{-1} \mathrm{~mol}^{-1}$. The value of Z is. [JEE(Advanced) 2017]
12. For the following cell :
[JEE(Advanced) 2017]
$\mathrm{Zn}(\mathrm{s}) \mid \mathrm{ZnSO}_{4}$ (aq.) || CuSO_{4} (aq.) $\mid \mathrm{Cu}$ (s)
when the concentration of Zn^{2+} is 10 times the concentration of Cu^{2+}, the expression for $\Delta \mathrm{G}$ (in $\mathrm{J} \mathrm{mol}^{-1}$) is
[F is Faraday constant, R is gas constant, T is temperature , $\mathrm{E}^{\circ}(\mathrm{cell})=1.1 \mathrm{~V}$]
(A) $2.303 \mathrm{RT}+1.1 \mathrm{~F}$
(B) $2.303 \mathrm{RT}-2.2 \mathrm{~F}$
(C) 1.1 F
(D) -2.2 F
13. For the following electrochemical cell at 298 K ,
[JEE(Advanced) 2016]
$\operatorname{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g}, 1 \mathrm{bar})\right| \mathrm{H}^{+}$(aq, 1M) $\left|\mid \mathrm{M}^{4+}\right.$ (aq.), M^{2+} (aq.) $| \operatorname{Pt}(\mathrm{s})$
$\mathrm{E}_{\text {cell }}=0.092 \mathrm{~V}$ when $\frac{\left[\mathrm{M}^{2+}(\mathrm{aq} .)\right]}{\left[\mathrm{M}^{4+}(\mathrm{aq} .)\right]}=10^{\mathrm{x}}$
Given : $\mathrm{E}_{\mathrm{M}^{4+} / \mathrm{M}^{2+}}^{0}=0.151 \mathrm{~V} ; 2.303 \frac{\mathrm{RT}}{\mathrm{F}}=0.059$
The value of x is -
(A) -2
(B) -1
(C) 1
(D) 2
14. All the energy released from the reaction $\mathrm{X} \rightarrow \mathrm{Y}, \Delta_{\mathrm{r}} \mathrm{G}^{\mathrm{o}}=-193 \mathrm{~kJ} \mathrm{~mol}^{-1}$ is used for the oxidizing M^{+}and $\mathrm{M}^{+} \rightarrow \mathrm{M}^{3+}+2 \mathrm{e}^{-}, \mathrm{E}^{\mathrm{o}}=-0.25 \mathrm{~V}$.
Under standard conditions, the number of moles of M^{+}oxidized when one mole of X is converted to Y is
[$\mathrm{F}=96500 \mathrm{C} \mathrm{mol}^{-1}$]
[JEE(Advanced) 2015]
15. The molar conductivity of a solution of a weak acid $\mathrm{HX}(0.01 \mathrm{M})$ is 10 times smaller than the molar conductivity of a solution of a weak acid HY (0.1 M). If $\lambda^{0}{ }_{\mathrm{X}-} \approx \lambda^{0}{ }_{\mathrm{Y}}$, the difference in their $\mathrm{pK} \mathrm{K}_{\mathrm{a}}$ values, $\mathrm{pK}_{\mathrm{a}}(\mathrm{HX})-\mathrm{pK}(\mathrm{HY})$, is (consider degree of ionization of both acids to be $\ll 1$).
[JEE(Advanced) 2015]
16. In a galvanic cell , the salt bridge -
[JEE(Advanced) 2014]
(A) Does not participate chemically in the cell reaction
(B) Stops the diffusion of ions from one electrode to another
(C) Is necessary for the occurence of the cell reaction
(D) Ensures mixing of the two electrolytic solutions

SOLUTIONS

1. Ans. (A)

Sol. For weak acid, $\alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{0}}$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha} \Rightarrow \mathrm{K}_{\mathrm{a}}(1-\alpha)=\mathrm{C} \alpha^{2}$
$\Rightarrow \mathrm{K}_{\mathrm{a}}\left(1-\frac{\Lambda_{\mathrm{m}}}{\Lambda_{0}}\right)=\mathrm{C}\left(\frac{\Lambda_{\mathrm{m}}}{\Lambda_{0}}\right)^{2}$
$\Rightarrow \mathrm{K}_{\mathrm{a}}-\frac{\Lambda_{\mathrm{m}} \mathrm{K}_{\mathrm{a}}}{\Lambda_{0}}=\frac{\mathrm{C} \Lambda_{\mathrm{m}}^{2}}{\left(\Lambda_{0}\right)^{2}}$
Divide by ' $\Lambda_{\mathrm{m}}{ }^{\prime}$
$\Rightarrow \frac{\mathrm{K}_{\mathrm{a}}}{\Lambda_{\mathrm{m}}}=\frac{\mathrm{C} \Lambda_{\mathrm{m}}}{\left(\Lambda_{0}\right)^{2}}+\frac{\mathrm{K}_{\mathrm{a}}}{\Lambda_{0}}$
$\Rightarrow \frac{1}{\Lambda_{\mathrm{m}}}=\frac{\mathrm{C} \Lambda_{\mathrm{m}}}{\mathrm{K}_{\mathrm{a}}\left(\Lambda_{0}\right)^{2}}+\frac{1}{\Lambda_{0}}$
Plot $\frac{1}{\Lambda_{\mathrm{m}}}$ vs C Λ_{m} has
Slope $=\frac{1}{\mathrm{~K}_{\mathrm{a}}\left(\Lambda_{0}\right)^{2}}=\mathrm{S}$
y-intercept $=\frac{1}{\Lambda_{0}}=\mathrm{P}$
Then, $\frac{\mathrm{P}}{\mathrm{S}}=\frac{\frac{1}{\Lambda_{0}}}{\frac{1}{\mathrm{~K}_{\mathrm{a}}\left(\Lambda_{0}\right)^{2}}}=\mathrm{K}_{\mathrm{a}} \Lambda_{0}$
2. Ans. (0.74-0.80)

Sol.

For the required reaction $\Delta \mathrm{G}^{\circ}=\Delta \mathrm{G}^{\circ}{ }_{1}+\Delta \mathrm{G}^{\circ}{ }_{2}+\Delta \mathrm{G}^{\circ}{ }_{3}$
$\Rightarrow 7 \times \mathrm{E}=1.68 \times 3+1.21 \times 2+(-1.03) \times 2$
$\mathrm{E}=\frac{5.4}{7}=0.7714$
Ans. $=0.77$
3. Ans. (7)

Sol. $\quad \Lambda^{\circ}\left(\mathrm{U}_{\mathrm{m}} \mathrm{Y}_{\mathrm{p}}\right)=\mathrm{m} \times \lambda_{\mathrm{U}^{\mathrm{P}^{+}}}^{0}+\mathrm{p} \times \lambda_{\mathrm{Y}^{\mathrm{m}-}}^{\circ}=250$
$25 m+100 p=250$
$m+4 p=10$
$\Lambda^{\circ}\left(\mathrm{V}_{\mathrm{m}} \mathrm{X}_{\mathrm{n}}\right)=\mathrm{m} \times \lambda_{\mathrm{v}^{\mathrm{n}+}}+\mathrm{n} \times \lambda_{\mathrm{X}^{\mathrm{m}-}}^{\circ}=440$
$100 \mathrm{~m}+80 \mathrm{n}=440$
$5 m+4 n=22$

From the extrapolation of curve
$\Lambda^{\circ}\left(Z_{m} X_{n}\right)=340$
$\mathrm{m} \times \lambda_{\mathrm{z}^{\mathrm{n}+}}^{\circ}+\mathrm{n} \lambda_{\mathrm{x}^{\mathrm{m}-}}^{0}=340$
$50 \mathrm{~m}+80 \mathrm{n}=340$
$5 m+8 n=34$
(3) - (2) $\Rightarrow \quad 4 \mathrm{n}=12 \Rightarrow \mathrm{n}=3$

Putting in (2) we get $\mathrm{m}=2$
Putting in (1) we get $p=2$
$m+n+p=2+3+2=7$
4. Ans. (B, C, D)

Sol. $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\Delta G=\Delta H+T\left(\frac{d \Delta G}{d T}\right)_{p}$
$-\mathrm{nF}\left(\frac{\mathrm{dE}_{\text {cell }}}{\mathrm{dT}}\right)=-\Delta \mathrm{S}$

$$
\begin{aligned}
\frac{\mathrm{dE}_{\text {cell }}}{\mathrm{dT}} & =\frac{\Delta \mathrm{S}}{\mathrm{nF}}=\frac{\mathrm{R}}{\mathrm{~F}}(\text { given }) \\
& \Rightarrow \Delta \mathrm{S}=\mathrm{nR}
\end{aligned}
$$

For the reaction, $M(\mathrm{~g})+2 \mathrm{H}^{\oplus}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{M}^{2 \oplus}(\mathrm{aq})$

$$
\begin{array}{ll}
& \mathrm{n}=2 \\
\Rightarrow \quad & \Delta \mathrm{~S}=2 \mathrm{R}
\end{array}
$$

Hence, option (A) is incorrect

For the reaction, $\mathrm{Pt}_{(\mathrm{s})} \mid \mathrm{H}_{2(\mathrm{~g})}, 1$ bar $\left|\mathrm{H}^{\oplus}{ }_{\mathrm{aq}}(0.01 \mathrm{M}) \| \mathrm{H}^{\oplus}(\mathrm{aq}, 0.1 \mathrm{M})\right| \mathrm{H}_{2}\left(\mathrm{~g}, 1\right.$ bar) $\mid \mathrm{Pt}_{(\mathrm{s})}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\circ}-\frac{0.0591}{1} \log \frac{0.01}{0.1}=0.0591 \mathrm{~V}$
$\mathrm{E}_{\text {cell }}$ is positive $\Rightarrow \Delta \mathrm{G}<0$ and $\Delta \mathrm{S}>0$ ($\Delta \mathrm{H}=0$ for concentration cells)
Hence, option (B) is correct
Racemization of an optically active compound is a spontaneous process.
Here, $\Delta \mathrm{H}=0$ (similar type of bonds are present in enantiomers)
$\Rightarrow \Delta \mathrm{S}>0$
Hence, option (C) is correct.
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+3$ en $\rightarrow\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}+6 \mathrm{H}_{2} \mathrm{O}$ is a spontaneous process more stable complex is formed
$\Rightarrow \Delta \mathrm{S}>0$
Hence, option (D) is correct.
5. Ans. (A, B, C)

Sol. $x(s) \longrightarrow x^{+2}(0.001 M)+2 e^{-}$(anode)
$\mathrm{y}^{+2}(0.1 \mathrm{M})+2 \mathrm{e}^{-} \longrightarrow \mathrm{y}(\mathrm{s})$ (cathode)
$\mathrm{E}_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {cell }}-\frac{0.06}{2} \log \frac{\mathrm{X}^{+2}}{\mathrm{y}^{+2}}$
$\mathrm{E}_{\text {cell }}=\mathrm{E}^{\circ}{ }_{\text {cell }}+0.06$
(A) Cd and $\mathrm{Ni}^{\circ}{ }_{\text {cell }}=+0.4-0.24 ; \mathrm{E}_{\text {cell }}=0.22$
(B) Cd and $\mathrm{Fe} \mathrm{E}^{\circ}{ }_{\text {cell }}=-0.04 ; \mathrm{E}_{\text {cell }}=0.02$
(C) Ni and $\mathrm{Pb} \mathrm{E}^{\circ}{ }_{\text {cell }}=0.11 ; \mathrm{E}_{\text {cell }}=0.17$
(D) Ni and $\mathrm{Fe}^{\circ}{ }_{\text {cell }}=-0.2 ; \mathrm{E}_{\text {cell }}=-0.14$
since in $(A)(B)(C) E_{\text {cell }}$ is positive hence answer is $(A)(B)(C)$.
6. Ans. (0.21 or 0.22)

Sol. $\quad \mathrm{K}_{\mathrm{a}}=\frac{\Lambda_{\mathrm{m}}^{2} \mathrm{C}}{\Lambda_{\mathrm{m}}^{\circ}\left(\Lambda_{\mathrm{m}}^{\circ}-\Lambda_{\mathrm{m}}\right)}$
$K_{a}=\frac{\left(y \times 10^{2}\right)^{2} \times C}{4 \times 10^{2}\left(4 \times 10^{2}-\mathrm{y} \times 10^{2}\right)}=\frac{\left(3 y \times 10^{2}\right)^{2} \times \frac{\mathrm{C}}{20}}{4 \times 10^{2}\left(4 \times 10^{2}-3 y \times 10^{2}\right)}$
$\Rightarrow \frac{1}{(4-y)}=\frac{9}{20(4-3 y)} \Rightarrow y=\frac{44}{51}$
$\alpha=\frac{\frac{44}{51} \times 10}{4 \times 10^{2}}$
$\alpha=0.2156(\alpha=0.22$ or 0.21$)$
$y=0.86$
7. Ans. (0.86)
8. Ans. (13.00-13.60)

Sol. $\mathrm{E}_{\text {cell }}^{0}=1.23-0.00=1.23 \mathrm{~V}$
$\Delta \mathrm{G}_{\text {cell }}^{0}=-\mathrm{nF} \mathrm{E}_{\text {cell }}^{0}=-2 \times 96500 \times 1.23 \mathrm{~J}$
$\therefore \quad$ Work derived from this fuel cell

$$
=\frac{70}{100} \times\left(-\Delta \mathrm{G}_{\text {cell }}^{0}\right) \times 10^{-3}=\mathrm{xJ}
$$

Since insulated vessel, hence q = 0
From equation, for monoatomic gas,

$$
\begin{aligned}
& \quad \mathrm{w}=\Delta \mathrm{U} \quad \Rightarrow \quad \mathrm{x}=\mathrm{nC}_{\mathrm{v}, \mathrm{~m}} \Delta \mathrm{~T}\left\{\mathrm{C}_{\mathrm{V}, \mathrm{~m}}=\frac{3 \mathrm{R}}{2}\right\} \\
& \text { or, } \quad \frac{70}{100} \times(2 \times 96500 \times 1.23) \times 10^{-3}=1 \times \frac{3}{2} \times 8.314 \times \Delta \mathrm{T} \\
& \therefore \quad \Delta \mathrm{~T}=13.32
\end{aligned}
$$

9. Ans. (10)

Sol. $\mathrm{Mg}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
$\mathrm{E}^{\circ}{ }_{\text {Cell }}=2.70 \quad \mathrm{E}_{\text {Cell }}=2.67 \quad \mathrm{Mg}^{2+}=\mathrm{x} \mathrm{M}$

$$
\mathrm{Cu}^{2+}=1 \mathrm{M}
$$

$\mathrm{E}_{\text {Cell }}=\mathrm{E}^{\circ}$ Cell $-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \mathrm{x}$
$2.67=2.70-\frac{\mathrm{RT}}{2 \mathrm{~F}} \ln \mathrm{x}$
$-0.03=-\frac{R \times 300}{2 F} \times \ln x$
$\ln x=\frac{0.03 \times 2}{300} \times \frac{F}{R}=\frac{0.03 \times 2 \times 11500}{300 \times 1}$
$\ln x=2.30=\ln (10)$
$\mathrm{x}=10$
10. Ans. (-11.62)

Sol. $A(s)\left|A^{+n}(a q, 2 M) \| B^{+2 n}(a q, 1 M)\right| B(s)$

$$
\Delta \mathrm{H}^{\circ}=2 \Delta \mathrm{G}^{\circ} 0 \quad \mathrm{E}_{\text {cell }}=0
$$

Cell Rx $\quad A \rightarrow A^{+n}+$ ne $\left.^{-}\right] \times 2$

$$
\mathrm{B}^{+2 \mathrm{n}}+2 \mathrm{n}^{-} \rightarrow \mathrm{B}(\mathrm{~s})
$$

$2 \mathrm{~A}(\mathrm{~s})+\underset{1 \mathrm{~m}}{\mathrm{~B}^{2 \mathrm{n}}}(\mathrm{aq}) \rightarrow \underset{2 \mathrm{M}}{2 \mathrm{~A}^{+\mathrm{n}}}(\mathrm{aq})+\mathrm{B}(\mathrm{s})$
$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \frac{\left[\mathrm{A}^{+\mathrm{n}}\right]^{2}}{\left[\mathrm{~B}^{+2 \mathrm{n}}\right]}$
$\Delta G^{\circ}=-R T \ln \frac{\left[\mathrm{~A}^{+n}\right]^{2}}{\left[\mathrm{~B}^{+2 \mathrm{n}}\right]}=-\mathrm{RT} \cdot \ln \frac{2^{2}}{1}=-\mathrm{RT} \cdot \ln 4$
$\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
$\Delta \mathrm{G}^{\circ}=2 \Delta \mathrm{G}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
$\Delta \mathrm{S}^{\circ}=\frac{\Delta \mathrm{G}^{\circ}}{\mathrm{T}}=-\frac{\mathrm{RT} \ln 4}{\mathrm{~T}}=-8.3 \times 2 \times 0.7=-11.62 \mathrm{~J} / \mathrm{K} . \mathrm{mol}$
11. Ans. (6)

Sol. For weak acid $\left[\mathrm{H}^{+}\right]=\mathrm{c} \alpha=\mathrm{c} \frac{\Lambda_{\mathrm{m}}^{\mathrm{c}}}{\Lambda_{\mathrm{m}}^{\infty}}=\mathrm{c} \times \frac{\kappa \times \frac{1000}{\mathrm{c}}}{\Lambda_{\mathrm{m}}^{\infty}}=\frac{\kappa \times 1000}{\Lambda_{\mathrm{m}}^{\infty}}=\frac{\mathrm{G} \times\left(\frac{l}{\mathrm{a}}\right) \times 1000}{\Lambda_{\mathrm{m}}^{\infty}}$
$10^{-4}=\frac{5 \times 10^{-7} \times\left(\frac{120}{1}\right) \times 1000}{\mathrm{Z} \times 10^{2}} \Rightarrow \mathrm{Z}=6$
12. Ans. (B)

Sol. $\Delta G=\Delta G^{0}+2.303 R T \log Q$
$\Delta \mathrm{G}=-\mathrm{nFE}{ }^{0}+2.303 \mathrm{RT} \log \mathrm{Q}$
Given : $\mathrm{E}^{\mathrm{o}}=1.1 \mathrm{~V}$ and $\mathrm{n}=2$
$\Delta \mathrm{G}=(-2 \times 1.1 \times \mathrm{F})+2.303 \mathrm{RT} \log \left[\frac{\left[\mathrm{Zn}^{+2}\right]}{\left.\mathrm{Cu}^{+2}\right]}\right.$
$\Delta G=-2.2 \mathrm{~F}+2.303 R T$
13. Ans. (D)

Sol. At anode $: \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$
At cathode $: \mathrm{M}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{M}^{2+}(\mathrm{aq})$
Net cell reaction $: \mathrm{H}_{2}(\mathrm{~g})+\mathrm{M}^{4+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{M}^{2+}(\mathrm{aq})$
Now, $E_{\text {cell }}=\left(E_{M^{4+} / \mathrm{M}^{2+}}^{\circ}-\mathrm{E}_{\mathrm{H}^{+} / \mathrm{H}_{2}}^{\circ}\right)-\frac{0.059}{\mathrm{n}} \cdot \log \frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{M}^{2+}\right]}{\mathrm{P}_{\mathrm{H}_{2}} \cdot\left[\mathrm{M}^{4+}\right]}$
or, $0.092=(0.151-0)-\frac{0.059}{2} \cdot \log \frac{1^{2} \times\left[\mathrm{M}^{2+}\right]}{1 \times\left[\mathrm{M}^{4+}\right]}$
$\therefore \frac{\left[\mathrm{M}^{2+}\right]}{\left[\mathrm{M}^{4+}\right]}=10^{2} \Rightarrow \mathrm{x}=2$
14. Ans. (4)

Sol. $|\Delta G|=-n F E$

$$
193 \times 10^{3}=x \times 2 \times 96500 \times 0.25
$$

(where x is the number of moles of M^{+}oxidised)

$$
x=4
$$

15. Ans. (3)

Sol. $\quad \Lambda_{\mathrm{m}}(\mathrm{HX})=\frac{\mathrm{x}}{10} \quad \Lambda_{\mathrm{m}}(\mathrm{HY})=\mathrm{x}$
$\frac{\Lambda_{\mathrm{m}}(\mathrm{HX}) / \Lambda_{\mathrm{m}}^{0}(\mathrm{HX})}{\Lambda_{\mathrm{m}}(\mathrm{HY}) / \Lambda_{\mathrm{m}}^{0}(\mathrm{HY})}=\frac{(\mathrm{x} / 10) / \Lambda_{\mathrm{m}}^{0}(\mathrm{HX})}{\mathrm{x} / \Lambda_{\mathrm{m}}^{0}(\mathrm{HY})}=\frac{\alpha_{1}}{\alpha_{2}}=\frac{1}{10}$

HX	\rightleftharpoons	H^{+}	+	X^{-}	HY	\rightleftharpoons
0.01	-		-	H^{+}	+	Y^{-}
0.01						
$0.01\left(1-\alpha_{1}\right)$	$0.01 \alpha_{1}$	$0.01 \alpha_{1}$	$0.1\left(1-\alpha_{2}\right)$		$0.1 \alpha_{2}$	$0.1 \alpha_{2}$
$\mathrm{~K}_{\mathrm{a}_{1}}=0.01 \alpha_{1}^{2}$			$\mathrm{~K}_{\mathrm{a}_{2}}=0.1 \alpha_{2}^{2}$			

$\frac{\mathrm{K}_{\mathrm{a}_{1}}}{\mathrm{~K}_{\mathrm{a}_{2}}}=\frac{1}{10} \cdot \frac{\alpha_{1}^{2}}{\alpha_{2}^{2}}=\frac{1}{1000}$
$\log \mathrm{K}_{\mathrm{a} 1}-\log \mathrm{K}_{\mathrm{a} 2}=-3$
$\mathrm{pK}_{\mathrm{a} 1}-\mathrm{pK}_{\mathrm{a} 2}=3$
16. Ans. (A, B)

Sol. Note : We feel option (C) is incorrect because in some type of concentration cells, salt bridge is not required. Which can be confirmed from NCERT (XII-Chemistry, Part-1) in Sub section 3.2 Galvanic Cell. "The electrolytes of the two half-cells are connected internally through a salt bridge as shown in Fig. 3.1. Sometimes, both the electrodes dip in the same electrolyte solution and in such cases we do not require a salt bridge. "

