CONCENTRATION TERMS

1. The mole fraction of urea in an aqueous urea solution containing 900 g of water is 0.05 . If the density of the solution is $1.2 \mathrm{~g} \mathrm{~cm}^{-3}$, the molarity of urea solution is \qquad [JEE(Advanced) 2019]
(Given data : Molar masses of urea and water are $60 \mathrm{~g} \mathrm{~mol}^{-1}$ and $18 \mathrm{~g} \mathrm{~mol}^{-1}$, respectively)
2. The mole fraction of a solute in a solution is 0.1 . At 298 K , molarity of this solution is the same as its molality. Density of this solution at 298 K is $2.0 \mathrm{~g} \mathrm{~cm}^{-3}$. The ratio of the molecular weights of the solute and solvent, $\left(\frac{\mathrm{MW}_{\text {solute }}}{\mathrm{MW}_{\text {solvent }}}\right)$, is
[JEE(Advanced) 2016]
3. A compound $\mathbf{H}_{2} \mathbf{X}$ with molar weight of 80 g is dissolved in a solvent having density of $0.4 \mathrm{~g} \mathrm{~mol}^{-1}$, Assuming no change in volume upon dissolution, the molality of a 3.2 molar solution is
[JEE(Advanced) 2014]

SOLUTIONS

1. Ans. (2.80 or 3.05)

Sol. $\quad X_{\text {urea }}=0.05=\frac{n}{n+50}$

$$
\begin{aligned}
19 n & =50 \\
n & =2.6315
\end{aligned}
$$

$\mathrm{V}_{\mathrm{sol}}=\frac{(2.6315 \times 60+900)}{1.2}=881.5789 \mathrm{ml}$
Molarity $=\frac{2.6315 \times 1000}{881.5789}=2.9849$
Molarity $=2.98 \mathrm{M}$
2. Ans. (9)

Sol. 1 mole solution has 0.1 mole solute and 0.9 mole solvent
Let $\quad \mathrm{M}_{1}=$ Molar mass solute

$$
\mathrm{M}_{2}=\text { Molar mass solvent }
$$

Molality, $\quad m=\frac{0.1}{0.9 \mathrm{M}_{2}} \times 1000$
Molarity, $\quad \mathrm{M}=\frac{0.1}{0.1 \mathrm{M}_{1}+0.9 \mathrm{M}_{2}} \times 2 \times 1000$

$$
\because \quad m=M
$$

$$
\Rightarrow \quad \frac{0.1 \times 1000}{0.9 \mathrm{M}_{2}}=\frac{200}{0.1 \mathrm{M}_{1}+0.9 \mathrm{M}_{2}} \Rightarrow \frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}=9
$$

Alternate solution :

$$
\because \quad M=m
$$

$\Rightarrow \quad$ volume of solution $=$ mass of solvent
$\Rightarrow \quad \frac{\mathrm{W}_{\text {solute }}+\mathrm{W}_{\text {solvent }}}{2}=\mathrm{W}_{\text {solvent }}$

$$
\mathrm{W}_{\text {solute }}=\mathrm{W}_{\text {solvent }}
$$

$$
0.1 \times \mathrm{M}_{\text {solute }}=0.9 \times \mathrm{M}_{\text {solvent }}
$$

$$
\frac{\mathrm{M}_{\text {solute }}}{\mathrm{M}_{\text {solvent }}}=9
$$

3. Ans. (8)

Sol. Molarity $=3.2 \mathrm{M}$
Let volume of solution $=1000 \mathrm{ml}=$ volume of solvent
Mass of solvent $=1000 \times 0.4=400 \mathrm{gm}$
$\mathrm{n}_{\text {solute }}=3.2$ mole
Molality $(\mathrm{m})=\frac{3.2}{400 / 1000}=8$

