CHEMICAL KINETICS

1. The plot of $\log \mathrm{k}_{\mathrm{f}}$ versus $1 / \mathrm{T}$ for a reversible reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$ is shown. [JEE(Advanced) 2023]

Pre-exponential factors for the forward and backward reactions are $10^{15} \mathrm{~s}^{-1}$ and $10^{11} \mathrm{~s}^{-1}$, respectively. If the value of $\log \mathrm{K}$ for the reaction at 500 K is 6 , the value of $\left|\log \mathrm{k}_{\mathrm{b}}\right|$ at 250 K is \qquad -.
[$K=$ equilibrium constant of the reaction
$\mathrm{k}_{\mathrm{f}}=$ rate constant of forward reaction
$\mathrm{k}_{\mathrm{b}}=$ rate constant of backward reaction]
2. Match the rate expressions in LIST-I for the decomposition of X with the corresponding profiles provided in LIST-II. X_{s} and k constants having appropriate units.

LIST-I	LIST-II
(I) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$ under all possible initial concentration of X	(P)
(II) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$ where initial concentration of X are much less than X_{s}	
(III) rate $=\frac{\mathrm{k}[\mathrm{X}]}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$ where initial concentration of X are much higher than X_{s}	(R)

(IV) rate $=\frac{\mathrm{k}[\mathrm{X}]^{2}}{\mathrm{X}_{\mathrm{s}}+[\mathrm{X}]}$ where initial concentration of X is much higher than X_{s}

(A) I \rightarrow P; II \rightarrow Q; III \rightarrow S; IV \rightarrow T
(B) I \rightarrow R; II \rightarrow S; III \rightarrow S; IV \rightarrow T
(C) I \rightarrow P; II \rightarrow Q; III \rightarrow Q; IV $\rightarrow \mathrm{R}$
(D) I \rightarrow R; II \rightarrow S; III \rightarrow Q; IV $\rightarrow \mathrm{R}$
3. For the following reaction
[JEE(Advanced) 2021]

$$
2 \mathbf{X}+\mathbf{Y} \xrightarrow{\mathrm{k}} \mathbf{P}
$$

the rate of reaction is $\frac{\mathrm{d}[\mathbf{P}]}{\mathrm{dt}}=\mathrm{k}[\mathbf{X}]$. Two moles of \mathbf{X} are mixed with one mole of \mathbf{Y} to make 1.0 L of solution. At $50 \mathrm{~s}, 0.5$ mole of \mathbf{Y} is left in the reaction mixture. The correct statement(s) about the reaction is(are)
(Use: $\ln 2=0.693$)
(A) The rate constant, k, of the reaction is $13.86 \times 10^{-4} \mathrm{~s}^{-1}$.
(B) Half-life of \mathbf{X} is 50 s .
(C) At $50 \mathrm{~s},-\frac{\mathrm{d}[\mathrm{X}]}{\mathrm{dt}}=13.86 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(D) At $100 \mathrm{~s},-\frac{\mathrm{d}[\mathbf{Y}]}{\mathrm{dt}}=3.46 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
4. Which of the following plots is(are) correct for the given reaction?
[JEE(Advanced) 2020]
($[\mathrm{P}]_{0}$ is the initial concentration of \mathbf{P})

(B)

(C) $\frac{[\mathrm{Q}}{[\mathrm{P}]_{0}}$

(D)

5. In the decay sequence:
[JEE(Advanced) 2019]

$$
{ }_{92}^{238} \mathrm{U} \xrightarrow{-\mathrm{x}_{1}}{ }_{90}^{234} \mathrm{Th} \xrightarrow{-\mathrm{x}_{2}}{ }_{91}^{234} \mathrm{~Pa} \xrightarrow{-\mathrm{x}_{3}}{ }^{234} \mathrm{Z} \xrightarrow{-\mathrm{x}_{4}}{ }_{90}^{230} \mathrm{Th}
$$

$\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ and x_{4} are particles/ radiation emitted by the respective isotopes. The correct option(s) is/are-
(A) Z is an isotope of uranium
(B) x_{2} is β^{-}
(C) x_{1} will deflect towards negatively charged plate
(D) x_{3} is γ-ray
6. Consider the kinetic data given in the following table for the reaction $\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow$ Product.

Experiment No.	$[\mathrm{A}]$ $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$[\mathrm{B}]$ $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	$[\mathrm{C}]$ $\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	Rate of reaction $\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
1	0.2	0.1	0.1	6.0×10^{-5}
2	0.2	0.2	0.1	6.0×10^{-5}
3	0.2	0.1	0.2	1.2×10^{-4}
4	0.3	0.1	0.1	9.0×10^{-5}

The rate of the reaction for $[\mathrm{A}]=0.15 \mathrm{~mol} \mathrm{dm}^{-3},[\mathrm{~B}]=0.25 \mathrm{~mol} \mathrm{dm}^{-3}$ and $[\mathrm{C}]=0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ is found to be $\mathbf{Y} \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$. The value of \mathbf{Y} is \qquad .
[JEE(Advanced) 2019]
7. The decomposition reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is started in a closed cylinder under isothermal isochoric condition at an initial pressure of 1 atm . After $\mathrm{Y} \times 10^{3} \mathrm{~s}$, the pressure inside the cylinder is found to be 1.45 atm . If the rate constant of the reaction is $5 \times 10^{-4} \mathrm{~s}^{-1}$, assuming ideal gas behavior, the value of Y is \qquad .
[JEE(Advanced) 2019]
8. For a first order reaction $\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$ at constant volume and 300 K , the total pressure at the beginning $(t=0)$ and at time t are P_{0} and P_{t}, respectively. Initially, only A is present with concentration $[A]_{0}$, and $t_{1 / 3}$ is the time required for the partial pressure of A to reach $1 / 3^{\text {rd }}$ of its initial value. The correct option(s) is (are) :-
(Assume that all these gases behave as ideal gases)
[JEE(Advanced) 2018]
(A)

(B)

(C)

(D)

9. In a bimolecular reaction, the steric factor P was experimentally determined to be 4.5 . The correct option(s) among the following is(are):
[JEE(Advanced) 2017]
(A) The value of frequency factor predicted by Arrhenius equation is higher than that determined experimentally
(B) The activation energy of the reaction is unaffected by the value of the steric factor
(C) Since $P=4.5$, the reaction will not proceed unless an effective catalyst is used.
(D) Experimentally determined value of frequency factor is higher than that predicted by Arrhenius equation.
10. According to the Arrhenius equation,
[JEE(Advanced) 2016]
(A) A high activation energy usually implies a fast reaction
(B) Rate constant increase with increase in temperature. This is due to a greater number of collisions whose energy exceeds the activation energy
(C) Higher the magnitude of activation energy, stronger is the temperature dependence of the rate constant
(D) The pre-exponential factor is a measure of the rate at which collisions occur, irrespective of their energy.
11. For the elementary reaction $\mathbf{M} \rightarrow \mathbf{N}$, the rate of disappearance of \mathbf{M} increases by a factor of 8 upon doubling the concentration of \mathbf{M}. The order of the reaction with respect to \mathbf{M} is
[JEE(Advanced) 2014]
(A) 4
(B) 3
(C) 2
(D) 1

SOLUTIONS

1. Ans. (5)

Sol. For reaction $\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathrm{P}(\mathrm{g})$
$\log \mathrm{k}_{\mathrm{f}}=\frac{-\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{RT}}+\log \mathrm{A}_{\mathrm{f}}$ [Arrhenius equation for forward reaction]
From plot when, $\frac{1}{\mathrm{~T}}=0.002, \log \mathrm{k}_{\mathrm{f}}=9$
$\Rightarrow 9=\frac{-\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{R}}(0.002)+\log \left(\mathrm{A}_{\mathrm{f}}\right)$
Given : $\mathrm{A}_{\mathrm{f}}=10^{15} \mathrm{~s}^{-1}$
$\Rightarrow 9=\frac{-\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{R}}(0.002)+15$
$\Rightarrow \frac{\mathrm{E}_{\mathrm{f}}}{2.303 \mathrm{R}}=\frac{6}{0.002}=3000$
Now, $K=\frac{k_{f}}{k_{b}}=\frac{A_{f}}{A_{b}} e^{-\left(E_{f}-E_{b}\right) / R T}$

$$
\log \mathrm{K}=-\frac{1}{2.303} \frac{\left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{b}}\right)}{\mathrm{RT}}+\log \left(\frac{10^{15}}{10^{11}}\right)
$$

At 500 K
$\Rightarrow 6=\frac{-\left(\mathrm{E}_{\mathrm{f}}-\mathrm{E}_{\mathrm{b}}\right)}{500 \mathrm{R}(2.303)}+4$
$\Rightarrow(1000 \mathrm{R})(2.303)=\mathrm{E}_{\mathrm{b}}-\mathrm{E}_{\mathrm{f}}$
$\Rightarrow(1000 \mathrm{R})(2.303)=\mathrm{E}_{\mathrm{b}}-3000(2.303 \mathrm{R})$
$\Rightarrow \mathrm{E}_{\mathrm{b}}=4000 \mathrm{R}(2.303)$
Now $\mathrm{k}_{\mathrm{b}}=\mathrm{A}_{\mathrm{b}} \mathrm{e}^{-\mathrm{E}_{\mathrm{b}} / \mathrm{RT}}$
$\Rightarrow \log \mathrm{k}_{\mathrm{b}}=\frac{-\mathrm{E}_{\mathrm{b}}}{2.303 \mathrm{RT}}+\log \mathrm{A}_{\mathrm{b}}$
At 250 K
$\Rightarrow \log \mathrm{k}_{\mathrm{b}}=-\frac{4000}{250}+\log \left(10^{11}\right) \quad$ [From equation (1)]

$$
=-16+11=-5
$$

$\left|\log k_{b}\right|=5$
2. Ans. (A)

Sol. (I) rate $=\frac{\mathrm{k}[\mathrm{x}]}{\mathrm{x}_{\mathrm{s}}+[\mathrm{x}]}=\frac{\mathrm{k}}{\frac{\mathrm{x}_{\mathrm{s}}}{[\mathrm{x}]}+1}$

$$
\begin{aligned}
& \text { If }[\mathrm{x}] \rightarrow \infty \Rightarrow \text { rate } \rightarrow \mathrm{k} \Rightarrow \text { order }=0 \\
& \Rightarrow \quad(\mathrm{I})-(\mathrm{R}),(\mathrm{P})
\end{aligned}
$$

(II) $[\mathrm{x}] \ll \mathrm{x}_{\mathrm{s}} \Rightarrow$ rate $=\frac{\mathrm{k}[\mathrm{x}]}{\mathrm{x}_{\mathrm{s}}} \Rightarrow$ order $=1$
$\Rightarrow \quad(\mathrm{II})-(\mathrm{Q}),(\mathrm{T})$
(III) $[\mathrm{x}] \gg \mathrm{x}_{\mathrm{s}} \Rightarrow$ rate $=\mathrm{k} \Rightarrow$ order $=0$

$$
\Rightarrow \quad(\mathrm{III})-(\mathrm{P}),(\mathrm{S})
$$

(IV) rate $=\frac{\mathrm{k}[\mathrm{x}]^{2}}{\mathrm{x}_{\mathrm{s}}+[\mathrm{x}]}$
$[\mathrm{x}] \gg \mathrm{x}_{\mathrm{s}} \Rightarrow$ rate $=\mathrm{k}[\mathrm{x}]$
$\Rightarrow \quad(\mathrm{IV})-(\mathrm{Q}),(\mathrm{T})$
3. Ans. (B, C, D)

Sol. $\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{k}[\mathrm{x}]^{1}$

$$
\begin{array}{llll}
& 2 \mathrm{x} & + & \mathrm{y} \\
\mathrm{t}=0 & 2 & \rightarrow & \mathrm{p} \\
\mathrm{t}=50 \mathrm{~s} & (2-1) \quad(1-0.5) & 0.5 \\
& -\frac{1}{2} \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{dp}}{\mathrm{dt}}=\mathrm{k}[\mathrm{x}]^{1} \\
& -\frac{\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{k}[\mathrm{x}]^{1} \\
& 2 \mathrm{k}=\frac{\ln 2}{50} \Rightarrow \mathrm{k}=\frac{\ln 2}{100} \\
\text { At } & 50 \sec \frac{-\mathrm{dx}}{\mathrm{dt}}=2 \mathrm{k} \times(1)^{1}=\frac{\ln 2}{50} \\
\text { At } & 100 \sec -\frac{1}{2} \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{-\mathrm{dy}}{\mathrm{dt}} \Rightarrow-\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\ln 2}{100} \times \frac{1}{2} \quad\left\{\frac{-\mathrm{dy}}{\mathrm{dt}}=\mathrm{k}[\mathrm{x}]^{1}\right\}
\end{array}
$$

4. Ans. (A)

Sol.

$t=0$
t
P_{0}
0
$\mathrm{P}_{0}-\mathrm{P}$
rate $=\mathrm{k}\left[<^{\mathrm{Br}}\right] \quad \ln \frac{\mathrm{P}_{0}}{\mathrm{P}}=\mathrm{kt}$
$t_{1 / 2}=\frac{0.693}{k} \quad \ln \frac{\mathrm{P}}{\mathrm{P}_{0}}=-k t$
$\frac{[\mathrm{Q}]}{[\mathrm{P}]_{0}}=\frac{\left[\mathrm{P}_{0}\right]-[\mathrm{P}]}{\left[\mathrm{P}_{0}\right]}=1-\frac{[\mathrm{P}]}{\left[\mathrm{P}_{0}\right]}=1-\mathrm{e}^{-\mathrm{kt}}$
5. Ans. (A, B, C)

Sol. ${ }_{92} \mathrm{U}^{238}$ \qquad

U and Z are isotopes
6. Ans. (6.70 to 6.80)

Sol. $r=K[A]^{n_{1}}[B]^{n_{2}}[C]^{\mathrm{n}_{3}}$
From table
$\mathrm{n}_{1}=1$
$\mathrm{n}_{2}=0$
$\mathrm{n}_{3}=1$
$\mathrm{r}=\mathrm{K}[\mathrm{A}][\mathrm{C}]$
From Exp-1
$6 \times 10^{-5}=\mathrm{K} \times 0.2 \times 0.1$
$\mathrm{K}=3 \times 10^{-3}$
$\mathrm{r}=\left(3 \times 10^{-3}\right) \times 0.15 \times 0.15$
$=6.75 \times 10^{-5}=\mathrm{Y} \times 10^{-5}$
$\mathrm{Y}=6.75$
7. Ans. (2.30 to 2.31)

Sol.

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \xrightarrow{\Delta} 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \text { at constant } \mathrm{V}, \mathrm{~T}
$$

$t=0$
1
$\mathrm{t}=\mathrm{y} \times 10^{3} \mathrm{sec}$

$$
\begin{array}{lll}
(1-2 P) & 2 P & P
\end{array}
$$

$$
\mathrm{P}_{\mathrm{T}}=(1+\mathrm{P})=1.45
$$

$$
\mathrm{P}=0.45 \mathrm{~atm}
$$

$(2 \mathrm{~K}) \mathrm{t}=2.303 \log \left(\frac{1}{1-2 \mathrm{P}}\right)$
$\left(2 \times 5 \times 10^{-4}\right) \times \mathrm{y} \times 10^{3}=2.303 \log \frac{1}{0.1}$
$y=2.303=2.30$
8. Ans. (A, D)

Sol. $\quad \mathrm{A} \longrightarrow 2 \mathrm{~B}+\mathrm{C}$
$\mathrm{t}=0 \quad \mathrm{P}_{0} \quad-\quad-$
$\mathrm{t}=\mathrm{t} \quad \mathrm{P}_{0}-\mathrm{P} \quad 2 \mathrm{P} \quad \mathrm{P}$
$\mathrm{P}_{0}+2 \mathrm{P}=\mathrm{P}_{\mathrm{t}}$
$\mathrm{K}=\frac{1}{\mathrm{t}} \ln \frac{\mathrm{P}_{0}}{\mathrm{P}_{0}-\mathrm{P}}=\frac{1}{\mathrm{t}} \ln \frac{\mathrm{P}_{0}}{\mathrm{P}_{0}-\frac{\left(\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{0}\right)}{2}}$
$K=\frac{1}{t} \ln \frac{2 P_{0}}{3 P_{0}-P_{t}} \Rightarrow-K t+\ln 2 P_{0}=\ln \left(3 P_{0}-P_{t}\right)$
and $\mathrm{t}_{1 / 3}=\frac{1}{\mathrm{~K}} \ln \frac{\mathrm{P}_{0}}{\mathrm{P}_{0} / 3}=\frac{1}{\mathrm{~K}} \ln 3=$ constant
Rate constant does not depends on concentration
9. Ans. (B, D)

Sol. $K=P . A . e^{-E a / R T}$
(A) If $\mathrm{P}<1$

$$
\mathrm{A}_{\mathrm{arr} .}>\mathrm{A}_{\mathrm{expt}}
$$

(D) If $\mathrm{P}>1$

$$
\mathrm{A}_{\text {arr. }}<\mathrm{A}_{\text {expt }}
$$

(C) If P is very small, then catalyst is required to carry out the reaction at measurable rate.
10. Ans. (B, C, D)

Sol. (A) $k=A e^{-E_{a} / R T}$
High E_{a} means less k , hence slower rate.
(B) $\mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}=$ fraction of molecules having kinetic energy greater than activation energy which increase as temperature increases.
(C) $\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}=\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$ i.e., $\ln \frac{\mathrm{k}_{2}}{\mathrm{k}_{1}} \propto \mathrm{E}_{\mathrm{a}}$
(D) Rate of reaction \propto Total number of collisions \times Fraction of collisions which can form product Rate of reaction $\quad \propto \mathrm{Z}_{\mathrm{AB}} \times\left(\mathrm{P} \times \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}\right)$
$\propto A e^{-E a / R T}$
11. Ans. (B)

Sol. $r=k[M]^{n} \quad ; \quad n=$ order
$\frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}=\left(\frac{[\mathrm{M}]_{2}}{[\mathrm{M}]_{1}}\right)^{\mathrm{n}}$
$8=(2)^{n} \quad \Rightarrow n=3$

