CHEMICAL EQUILIBRIUM

1. Consider the reaction $\mathbf{A} \rightleftharpoons \mathbf{B}$ at 1000 K . At time t^{\prime}, the temperature of the system was increased to 2000 K and the system was allowed to reach equilibrium. Throughout this experiment the partial pressure of \mathbf{A} was maintained at 1 bar. Given below is the plot of the partial pressure of \mathbf{B} with time. What is the ratio of the standard Gibbs energy of the reaction at 1000 K to that at 2000 K ?
[JEE(Advanced) 2020]

2. For the following reaction, the equilibrium constant K_{c} at 298 K is 1.6×10^{17}.
$\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{S}^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{FeS}(\mathrm{s})$
When equal volumes of $0.06 \mathrm{M} \mathrm{Fe}^{2+}(\mathrm{aq})$ and $0.2 \mathrm{M} \mathrm{S}^{2-}(\mathrm{aq})$ solutions are mixed, the equilibrium concentration of $\mathrm{Fe}^{2+}(\mathrm{aq})$ is found to be $\mathbf{Y} \times 10^{-17} \mathbf{M}$. The value of Y is \qquad . [JEE(Advanced) 2019]
3. Consider the following reversible reaction,
$\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{AB}(\mathrm{g})$.
The activition energy of the backward reaction exceeds that of the forward reaction by 2RT (in J mol ${ }^{-1}$). If the pre-exponential factor of the forward reaction is 4 times that of the reverse reaction, the absolute value of $\Delta \mathrm{G}^{\theta}$ (in J mol${ }^{-1}$) for the reaction at 300 K is \qquad .
(Given ; $\ln (2)=0.7, \mathrm{RT}=2500 \mathrm{~J} \mathrm{~mol}^{-1}$ at 300 K and G is the Gibbs energy)
[JEE(Advanced) 2018]

Paragraph For Question No. 4 and 5

Thermal decomposition of gaseous X_{2} to gaseous X at 298 K takes place according to the following equation :
$\mathrm{X}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{X}(\mathrm{g})$
The standard reaction Gibbs energy, $\Delta_{\mathrm{r}} \mathrm{G}^{\circ}$, of this reaction is positive. At the start of the reaction, there is one mole of X_{2} and no X. As the reaction proceeds, the number of moles of X formed is given by β. Thus, $\beta_{\text {equilibrium }}$ is the number of moles of X formed at equilibrium. The reaction is carried out at a constant total pressure of 2 bar. Consider the gases to behave ideally.
(Given : R $=0.083 \mathrm{~L}^{\mathrm{L}}$ bar $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
[JEE(Advanced) 2016]
4. The equilibrium constant K_{P} for this reaction at 298 K , in terms of $\beta_{\text {equilibrium }}$, is
(A) $\frac{8 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
(B) $\frac{8 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
(C) $\frac{4 \beta_{\text {equilibrium }}^{2}}{2-\beta_{\text {equilibrium }}}$
(D) $\frac{4 \beta_{\text {equilibrium }}^{2}}{4-\beta_{\text {equilibrium }}^{2}}$
5. The INCORRECT statement among the following, for this reaction, is
(A) Decrease in the total pressure will result in formation of more moles of gaseous X
(B) At the start of the reaction, dissociation of gaseous X_{2} takes place spontaneously
(C) $\beta_{\text {equilibrium }}=0.7$
(D) $\mathrm{K}_{\mathrm{C}}<1$
6. The $\%$ yield of ammonia as a function of time in the reaction
[JEE(Advanced) 2015]
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}<0$ at $\left(\mathrm{P}, \mathrm{T}_{1}\right)$ is given below -

If this reaction is conducted at $\left(P, T_{2}\right)$, with $T_{2}>T_{1}$, the \% yield of ammonia as a function of time is represented by -
(A)

(B)

(C)

(D)

SOLUTIONS

1. Ans. (0.25)

Sol. $\mathrm{K}_{\text {eq. }}=\frac{[\mathrm{B}]}{[\mathrm{A}]}$
$\mathrm{K}_{1000}=\frac{10}{1}=10$ and $\mathrm{K}_{2000}=\frac{100}{1}=100$
Now, $\frac{\Delta \mathrm{G}_{1000}^{0}}{\Delta \mathrm{G}_{2000}^{0}}=\frac{\left(-\mathrm{RT} \ell \mathrm{nk}_{\text {eq }}\right)_{1000}}{\left(-\mathrm{RT} \ell \mathrm{nK}_{\text {eq }}\right)_{2000}}=\frac{1000 \times \ell \mathrm{n} 10}{2000 \times \ell \mathrm{n} 100}=0.25$

2. Ans. (8.70 or 9.10)

Sol. $\quad \mathrm{Fe}^{+2}{ }_{\text {(aq.) }}+\mathrm{S}_{\text {(aq.) }}^{-2} \rightleftharpoons \mathrm{FeS}(\mathrm{s})$
$0.03 \mathrm{M} \quad 0.1 \mathrm{M}$
(0.03-x) (0.1-x)
$\simeq y \quad \simeq 0.07$
$\mathrm{K}_{\mathrm{c}} \gg 10^{3} \Rightarrow 0.03-\mathrm{x} \simeq 0 \simeq \mathrm{y}$
$\Rightarrow \mathrm{x}=0.03$
$\mathrm{K}_{\mathrm{c}}=1.6 \times 10^{17}=\frac{1}{\mathrm{y} \times 0.07}$
$y=\frac{10^{-17}}{1.6 \times 0.07}=8.928 \times 10^{-17}=Y \times 10^{-17} \quad \Rightarrow y \simeq 8.93$
3. Ans. (8500)

Sol. $\quad A_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightleftharpoons \mathrm{AB}_{(\mathrm{g})}$
$\mathrm{E}_{\mathrm{ab}}-\mathrm{E}_{\mathrm{af}}=2 \mathrm{RT}$
$\Rightarrow \Delta H=-2 R T$ and $\frac{\mathrm{A}_{\mathrm{f}}}{\mathrm{A}_{\mathrm{b}}}=4$
$\mathrm{K}_{\mathrm{eq}}=\left(\frac{\mathrm{K}_{\mathrm{f}}}{\mathrm{K}_{\mathrm{b}}}\right)=\frac{\mathrm{A}_{\mathrm{f}} \mathrm{e}^{-\mathrm{E}_{\mathrm{af}} / \mathrm{RT}}}{\mathrm{A}_{\mathrm{b}} \mathrm{e}^{-\mathrm{E}_{\mathrm{ab}} / \mathrm{RT}}}=4\left(\mathrm{e}^{2}\right)$
$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}=-2500 \times \ln \left(4 \times \mathrm{e}^{2}\right)=-8500 \mathrm{~J} / \mathrm{mol}$
Absolute value of $\Delta \mathrm{G}^{\circ}=8500 \mathrm{~J} / \mathrm{mol}$
4. Ans. (B)

Sol. $\quad \mathrm{X}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{X}(\mathrm{g})$
$1-\frac{\beta_{\text {eq. }}}{2} \quad \beta_{\text {eq. }}$
$\left.\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{P}_{\mathrm{X}}^{2}}{\mathrm{P}_{\mathrm{X}_{2}}}=\frac{\left(\frac{\beta_{\text {eq. }}}{1+\frac{\beta_{\text {eq }}}{2}} \mathrm{P}_{\mathrm{T}}\right)^{2}}{\left(\frac{1-\frac{\beta_{\text {eq. }}}{2}}{1+\frac{\beta_{\text {eq }}}{2}} \mathrm{P}_{\mathrm{T}}\right.}\right)^{2}$
$\mathrm{K}_{\mathrm{P}}=\frac{\beta_{\mathrm{eq} .}^{2}}{1-\frac{\beta_{\mathrm{eq} .}^{2}}{4}} \mathrm{P}_{\mathrm{T}}=\frac{2 \beta_{\mathrm{eq}}^{2}}{1-\frac{\beta_{\mathrm{eq} .}}{4}}=\frac{8 \beta_{\mathrm{eq} .}^{2}}{4-\beta_{\mathrm{eq} .}^{2}}$
5. Ans. (C)

Sol. (A) On decreasing $P_{T}\left[Q=\frac{n_{x^{2}} P_{T}}{n_{x_{2}} n_{T}}\right] Q$ will be less than $K p$ reaction will move in forward direction
(B) At the start of the reaction $\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+\mathrm{RT} \ln \mathrm{Q}$

$$
\mathrm{t}=0, \mathrm{Q}=0 \Rightarrow \Delta_{\mathrm{rxn}} \mathrm{G}=-\mathrm{ve} \text { (spontaneous) }
$$

(C) if $\beta_{\text {eq }}=0.7$
$\mathrm{K}_{\mathrm{p}}=\frac{8 \times 0.49}{4-0.49}=\frac{3.92}{3.51}$
$K_{p}>1$
Since it is given that
$\Delta \mathrm{G}^{0}>0 \Rightarrow \mathrm{~K}_{\mathrm{p}}<1$
\therefore This is incorrect
(D) $K_{p}=K_{C} \times(R T)^{\Delta n g}$
$K_{C}=\frac{K_{p}}{(\mathrm{R} \times 298)^{1}}$
$\mathrm{K}_{\mathrm{C}}<1$
6. Ans. (B)

Sol. At $\mathbf{t}=\mathbf{0} \Rightarrow r_{\text {net }}=k_{f}\left[N_{2}\right]\left[\mathrm{H}_{2}\right]^{3}=r_{f}$
$\therefore \%$ yield will increase in initial stages due to increase in net speed
As time proceeds $\Rightarrow \mathrm{r}_{\mathrm{net}}=\mathrm{k}_{\mathrm{f}}\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}-\mathrm{k}_{\mathrm{b}}\left[\mathrm{NH}_{3}\right]^{2}$
On increasing temp., $\mathrm{k}_{\mathrm{f}} \& \mathrm{k}_{\mathrm{b}}$ increase but increase of k_{b} is more. so \% yield will decrease
\% yield will increase in initial stage due to enhance speed but as time proceeds, final yield is governed by thermodynamics due to which yield decrease since reaction is exothermic

