ORGANIC CHEMISTRY

MISCELLANEOUS

1. Match the compounds in LIST-I with the observation in LIST-II, and choose the correct option.

[JEE(Advanced) 2022]

LIST-I

(I) Aniline

(II) o-Cresol

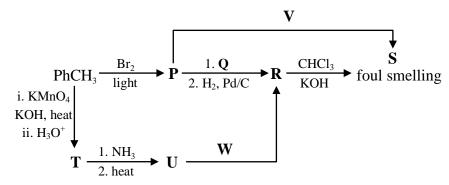
(III) Cysteine

(IV) Coprolactam

(A) $I \rightarrow P$, Q; $II \rightarrow S$; $III \rightarrow Q$, R; $IV \rightarrow P$

(C) $I \rightarrow Q$, S; $II \rightarrow P$, T; $III \rightarrow P$; $IV \rightarrow S$

LIST-II


- (P) Sodium fusion extract of the compound on boiling with FeSO₄, followed by acidification with conc. H₂SO₄, gives Prussian blue color.
- (Q) Sodium fusion extract of the compound on treatment with sodium nitroprusside gives blood red color.
- (R) Addition of the compound to a saturated solution of NaHCO₃ results in effervescence.
- (S) The compound reacts with bromine water to give a white precipitate.
- (T) Treating the compound with neutral FeCl₃ solution produces violet color.
- (B) I \rightarrow P; II \rightarrow R, S; III \rightarrow R; IV \rightarrow Q, S
- (D) I \rightarrow P, S; II \rightarrow T; III \rightarrow Q, R; IV \rightarrow P
- 2. The maximum number of possible isomers (including stereoisomers) which may be formed on *mono*-bromination of 1-methylcyclohex-1-ene using Br₂ and UV light is ______. [JEE(Advanced) 2021]
- 3. The reaction sequence(s) that would lead to *o*-xylene as the major product is (are) [**JEE(Advanced) 2021**] 1. NaNO₂/HCl

(B)
$$\begin{array}{c}
\text{Me} & 1. \text{ Mg, CO}_2, \text{ H}_3\text{O}^{+} \\
& 2. \text{ SOCl}_2 \\
\hline
3. \text{ H}_2, \text{ Pd-BaSO}_4 \\
4. \text{ Zn-Hg, HCl}
\end{array}$$

(C)
$$\begin{array}{c} \text{1. i. BH}_3 \\ \text{ii. H}_2\text{O}_2, \text{NaOH} \\ \hline \\ \text{2. PBr}_3 \\ \text{3. Zn, dil. HCl} \\ \end{array}$$

4. Correct option(s) for the following sequence of reactions is(are)

[JEE(Advanced) 2021]

(A) $\mathbf{Q} = \text{KNO}_2$, $\mathbf{W} = \text{LiAlH}_4$

- (B) \mathbf{R} = benzenamine, \mathbf{V} = KCN
- (C) $\mathbf{Q} = \text{AgNO}_2$, $\mathbf{R} = \text{phenylmethanamine}$
- (D) $\mathbf{W} = \text{LiAlH}_4$, $\mathbf{V} = \text{AgCN}$

- Fusion of MnO₂ with KOH in presence of O₂ produces a salt W. Alkaline solution of W upon eletrolytic oxidation yields another salt X. The manganese containing ions present in W and X, respectively, are Y and Z. Correct statement(s) is (are) [JEE(Advanced) 2019]
 - (A) Y is diamagnetic in nature while Z is paramagnetic
 - (B) Both Y and Z are coloured and have tetrahedral shape
 - (C) In both Y and Z, π -bonding occurs between p-orbitals of oxygen and d-orbitals of manganese.
 - (D) In aqueous acidic solution, Y undergoes disproportionation reaction to give Z and MnO_2 .
- **6.** Consider the following reactions (unbalanced)

 $Zn + hot conc. H_2SO_4 \rightarrow G + R + X$

 $Zn + conc. NaOH \rightarrow T + Q$

 $G + H_2S + NH_4OH \rightarrow Z$ (a precipitate) + X + Y

Choose the correct option(s).

[JEE(Advanced) 2019]

- (A) The oxidation state of Zn in T is +1
- (B) Bond order of Q is 1 in its ground state
- (C) Z is dirty white in colour
- (D) R is a V-shaped molecule

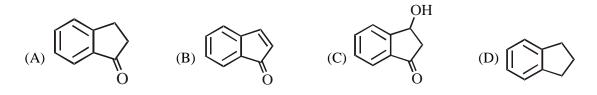
Paragraph "X"

Treatment of benzene with CO/HCl in the presence of anhydrous $AlCl_3/CuCl$ followed by reaction with $Ac_2O/NaOAc$ gives compound X as the major product. Compound X upon reaction with Br_2/Na_2CO_3 , followed by heating at 473 K with moist KOH furnishes Y as the major product. Reaction of X with $H_2/Pd-C$, followed by H_3PO_4 treatment gives Z as the major product.

(There are two questions based on PARAGRAPH "X", the question given below is one of them)

7. The compound Y is :-

[JEE(Advanced) 2018]


Paragraph "X"

Treatment of benzene with CO/HCl in the presence of anhydrous AlCl₃/CuCl followed by reaction with Ac₂O/NaOAc gives compound X as the major product. Compound X upon reaction with Br₂/Na₂CO₃, followed by heating at 473 K with moist KOH furnishes Y as the major product. Reaction of X with H₂/Pd-C, followed by H₃PO₄ treatment gives Z as the major product.

(There are two question based on PARAGARAPH "X", the question given below is one of them)

[JEE(Advanced) 2018]

8. The compound Z is :-

Paragraph "A"

An organic acid $P(C_{11}H_{12}O_2)$ can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer dacron. Upon ozonolysis, P gives an aliphatic ketone as one of the products. P undergoes the following reaction sequences to furnish R via Q. The compound P also undergoes another set of reactions to produce S. [JEE(Advanced) 2018]

$$(1) \ H_{2}/Pd-C \\ (2) \ NH_{3}/\Delta \\ S \xleftarrow{(3) \ Br_{2}/NaOH} S \xrightarrow{(2) \ SOCl_{2}} Q \xrightarrow{(1) \ HCl} (3) \ CO_{2}(dry \ ice) \\ (5) \ H_{2}/Pd-C \\ (4) \ NaBH_{4} \\ (4) \ H_{3}O^{+} \\ (4) \ H_{3}O^{+}$$

(There are two questions based on PARAGRAPH "A", the question given below is one of them)

9. The compound \mathbf{R} is

$$(A) \longrightarrow CO_2H$$

$$(B) \longrightarrow CO_2H$$

$$(C) \longrightarrow CO_2H$$

$$(D) \longrightarrow CO_2H$$

Paragraph "A"

An organic acid $P(C_{11}H_{12}O_2)$ can easily be oxidized to a dibasic acid which reacts with ethyleneglycol to produce a polymer dacron. Upon ozonolysis, P gives an aliphatic ketone as one of the products. P undergoes the following reaction sequences to furnish R via Q. The compound P also undergoes another set of reactions to produce S.

(1)
$$H_2/Pd-C$$

(2) NH_3/Δ
(1) $H_2/Pd-C$
(1) HCl
 $S \leftarrow (3) Br_2/NaOH$
(2) $SOCl_2$
(3) $MeMgBr, CdCl_2$
(4) $NaBH$
(4) H_2O^+
(5) $H_2/Pd-C$
(6) $H_2/Pd-C$
(7) $H_2/Pd-C$
(8) $H_2/Pd-C$
(9) $H_2/Pd-C$
(1) HCl
(1) HCl
(2) $H_2/Pd-C$
(3) $H_2/Pd-C$
(4) $H_2/Pd-C$
(4) $H_2/Pd-C$
(5) $H_2/Pd-C$
(6) $H_2/Pd-C$
(7) $H_2/Pd-C$
(8) $H_2/Pd-C$
(9) $H_2/Pd-C$
(1) $H_2/Pd-C$
(1) $H_2/Pd-C$
(1) $H_2/Pd-C$
(2) $H_2/Pd-C$
(3) $H_2/Pd-C$
(4) $H_2/Pd-C$
(4) $H_2/Pd-C$
(5) $H_2/Pd-C$
(6) $H_2/Pd-C$
(7) $H_2/Pd-C$
(8) $H_2/Pd-C$
(9) $H_2/Pd-C$

(There are two questions based on PARAGRAPH "A", the question given below is one of them)

[JEE(Advanced) 2018]

10. The compound S is

11. The desired product X can be prepared by reacting the major product of the reactions in LIST-I with one or more appropriate reagents in LIST-II. [JEE(Advanced) 2018]

(given, order of migratory aptitude: aryl > alkyl > hydrogen)

LIST-I

LIST-II

2. [Ag(NH₃)₂]OH

3. Fehling solution

4. HCHO, NaOH

5. NaOBr

The correct option is

(A) P
$$\to$$
 1; Q \to 2,3; R \to 1,4; S \to 2,4

(B) P
$$\to$$
 1,5; Q \to 3,4; R \to 4,5; S \to 3

(C)
$$P \rightarrow 1.5$$
; $Q \rightarrow 3.4$; $R \rightarrow 5$; $S \rightarrow 2.4$

(D) P
$$\rightarrow$$
 1,5; Q \rightarrow 2,3; R \rightarrow 1,5; S \rightarrow 2,3

12. LIST-I contains reactions and LIST-II contains major products.

[JEE(Advanced) 2018]

LIST-I

$$_{P.}$$
 \searrow_{ONa} + \searrow_{Br} \longrightarrow

$$_{1.}$$
 \searrow_{OH}

$$Q.$$
 \searrow OMe $+$ HBr \longrightarrow

$$_{\text{R.}} \rightarrow _{\text{Br}} _{+} \text{NaOMe} \longrightarrow$$

$$_{3.}$$
 \searrow_{OMe}

$$_{\text{S.}} \searrow_{\text{ONa} + \text{MeBr} \longrightarrow}$$

Match each reaction in LIST-I with one or more product in LIST-II and choose the correct option.

(A)
$$P \rightarrow 1.5$$
; $Q \rightarrow 2$; $R \rightarrow 3$; $S \rightarrow 4$

(B)
$$P \rightarrow 1,4$$
; $Q \rightarrow 2$; $R \rightarrow 4$; $S \rightarrow 3$

(C) P
$$\rightarrow$$
 1,4; Q \rightarrow 1,2; R \rightarrow 3,4; S \rightarrow 4

(D) P
$$\to 4.5$$
; Q $\to 4$; R $\to 4$; S $\to 3.4$

ALLEN®

Answer Q.13, Q.14 and Q.15 by appropriately matching the information given in the three columns of the following table. [JEE(Advanced) 2017]

Columns 1, 2 and 3 contains starting materials, reaction conditions, and type of reactions, respectively.

Column-1	Column-2	Column-3
(I) Toluene	(i) NaOH/Br ₂	(P) Condensation
(II) Acetophenone	(ii) Br ₂ / hv	(Q) Carboxylation
(III) Banzaldehyde	(iii) (CH ₃ CO) ₂ O/CH ₃ COOK	(R) Substitution
(IV) Phenol	(iv) NaOH/CO ₂	(S) Haloform

- 13. For the synthesis of benzoic acid, the only CORRECT combination is
 - (A) (III) (iv) (R)
- (B) (IV) (ii) (P)
- (C) (I) (iv) (Q)
- (D) (II) (i) (S)
- 14. The only CORRECT combination in which the reaction proceeds through radical mechanism is
 - (A) (I) (ii) (R)
- (B) (II) (iii) (R)
- (C) (III) (ii) (P)
- (D) (IV) (i) (Q)
- **15.** The only CORRECT combination that gives two different carboxylic acids is
 - (A) (IV) (iii) (Q)
- (B) (III) (iii) (P)
- (C) (II) (iv) (R)
- (D)(I)(i)(S)
- 16. Compound P and R upon ozonolysis produce Q and S, respectively. The molecular formula of Q and S is C₈H₈O. Q undergoes Cannizzaro reaction but not haloform reaction, whereas S undergoes haloform reaction but not Cannizzaro reaction.
 [JEE(Advanced) 2017]

(i) P
$$\xrightarrow{i) O_3/CH_2Cl_2}$$
 Q

(ii) R
$$\xrightarrow{i) O_3/CH_2Cl_2}$$
 $\xrightarrow{ii) Zn/H_2O}$ S

 (C_8H_8O)

 (C_8H_8O)

The option(s) with suitable combination of P and R, respectively, is(are)

$$(A)$$
 H_3C and CH_3

(B)
$$CH_3$$
 and CH_3 CH_3 CH_3

(C)
$$H_3C$$
 and H_3C CH_3

$$_{(D)}$$
 $_{(D)}$ $_$

- 17. Among [Ni(CO)₄], [NiCl₄]²⁻, [Co(NH₃)₄Cl₂]Cl, Na₃[CoF₆], Na₂O₂ and CsO₂, the total number of paramagnetic compounds is [JEE(Advanced) 2016]
 - (A) 2

(B)3

(C)4

- (D) 5
- 18. In dilute aqueous H_2SO_4 , the complex diaquodioxalatoferrate(II) is oxidized by MnO_4^- . For this reaction, the ratio of the rate of change of $[H^+]$ to the rate of change of $[MnO_4^-]$ is [JEE(Advanced) 2015]

Paragraph for Question No. 19 and 20

Schemes 1 and 2 describe sequential transformation of alkynes M and N. Consider only the major products formed in each step for both the schemes. [JEE(Advanced) 2014]

1. NaNH₂ (2 equivalent)

2. OH

3. H₃O^{$$\oplus$$}(Mild)

4. H₂, Pd/C

5. CrO₃

Y Scheme-2

19. The product X is -

- **20.** The correct statement with respect to product Y is -
 - (A) It gives a positive Tollens test and is a functional isomer of X
 - (B) It gives a positive Tollens test and is a geometrical isomer of X
 - (C) It gives a positive Iodoform test and is a functional isomer of X
 - (D) It gives a positive Iodoform test and is a geometrical isomer of X
- **21.** Match the four starting materials (P, Q, R, S) given in List I with the corresponding reaction scheme (I, II, III, IV) provided in List II and select the correct answer using the code given below in lists.

List - I List – II [JEE(Advanced) 2014]

(P)
$$H = H$$

(1) Scheme I

(i) $KMnO_4$, HO , heat (ii) H , H_2O

?

(iii) $SOCl_2$ (iv) NH_3
 $C_7H_6N_2O_3$

(Q) CH (2) Scheme II

(i) Sn/HCl (ii) CH₃COCl (iii) conc.H₂SO₄

(iv) HNO₃ (v) dil.H₂SO₄, heat (vi) HO

$$\begin{array}{c}
(iv) \text{HNO}_3 \text{ (v) dil.H}_2\text{SO}_4, \text{ heat (vi) HO}^{\ominus} \\
\end{array}$$

(3) Scheme III

(S)
$$\stackrel{NO_2}{\smile}$$

(4) Scheme IV

(i) conc.
$$H_2SO_4$$
, $60^{\circ}C$
(ii) conc. HNO_3 , conc. H_2SO_4 (iii) dil. H_2SO_4 , heat
$$C_6H_5NO_4$$

Code:

- (A) 1 4 2 3
- (B) 3 1 4 2
- (C) 3 4 2 1
- (D) 4 1 3 2

SOLUTIONS

1. Ans. (D)

Sol.

: Blue colour in Lassign test due to presence of N

Aniline

:Violet colour with FeCl₃ due to presence of phenolic OH

o-Cresol

HS-CH₂-CH-COOH

NH₂

: It gives blod red colour with NaSCN

Cystein

: Blue colour in Lassign test due to presence of N

Caprolactam

2. Ans. (9 or 13 or 12)

$$CH_3$$
 EH_3
 EH_3

$$CH_3$$
 Br_2
 R/S
 $R/$

$$CH_3$$
 Br_2
 $Br * R/S$
(2 product)

Total 13 product

3. Ans. (A, B)

Sol.

$$(C) \xrightarrow{Me} \xrightarrow{BH_3} \xrightarrow{Me} OH$$

$$\downarrow^{PBr_3}$$

$$O-Xylene$$
is not formed

(D)
$$O_3$$
 Z_{n, H_2O}
 O_3
 $C_{N_2H_4}$
 C_{H_3}
 C_{CH_3}
 C_{CH_3}
 C_{CH_3}

4. Ans. (C, D)

5. Ans. (2, 3, 4)

Sol.
$$MnO_2 + 2KOH + \frac{1}{2}O_2 \xrightarrow{\Delta} K_2MnO_4 + H_2O$$

$$\begin{bmatrix} (W) = K_2 MnO_{4(aq)} \rightleftharpoons 2K_{(aq)}^{\oplus} + MnO_{4(aq)}^{2-} \\ (Y) \end{bmatrix}$$

$$K_2MnO_4 + H_2O \xrightarrow{\text{Electolytic}} H_2 + KOH + KMnO_4$$
(X)

[anion of $X = MnO_4^-$]

$$(\mathbf{Z})$$

$$\begin{bmatrix} :: MnO_4^{2-} & \xrightarrow{Electrolytic} MnO_4^{-} + e^{-} \\ (Y) & (Z) \end{bmatrix}$$

: In acidic solution; Y undergoes disproportionation reaction

$$\left[3MnO_{4(aq)}^{2-} + 4H^{\oplus} \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O\right]$$
(Z)

6. Ans. (2, 3, 4)

Sol.
$$Zn + 2H_2SO_4$$
 (Hot and conc.) $\rightarrow ZnSO_4 + SO_2 + 2H_2O$

(G) (R) (X)

 $Zn + 2NaOH (conc.) \rightarrow Na_2ZnO_2 + H_2$

(T) (Q)

 $ZnSO_4 + H_2S + 2NH_4OH \rightarrow ZnS\downarrow + 2H_2O + (NH_4)_2SO_4$

(Z) (X) (Y)

7. Ans. (C)

Sol.
$$CH=CH-COOH$$

$$CH=CH-COOH$$

$$AC_2O$$

$$ACON_3$$

$$C=CH$$

$$CH=CH-COOH$$

$$AC_2O$$

$$ACON_3$$

$$C=CH$$

$$CH=CH-COOH$$

$$AC_2O$$

$$ACON_3$$

$$C=CH$$

$$ACON_4$$

$$C=CH$$

$$CH-CH$$

$$COON$$

$$CH=CH-COOH$$

$$CH=CH-COOH$$

$$CH=CH-COOH$$

$$COON$$

$$(X) \xrightarrow{(1) \text{ H}_2\text{Pd-C}} (Z) \xrightarrow{(Z)} (Z)$$

8. Ans. (A)

Sol.
$$\bigcirc$$
 $CH=CH-COOH$
 AC_2O
 AC_2

9. Ans. (A)

10. Ans. (B)

Solution for Q. No. 9 & 10

$$\begin{array}{ccc}
C_{11}H_{12}O_2 & & & & & & & & & \\
(P) & & & & & & & & & & \\
\end{array}$$

$$\begin{array}{ccc}
COOH & & & & & & & \\
OH & & & & & \\
\hline
COOH & & & & & \\
\end{array}$$
Dacron

COOH

$$H_2Pd/C$$
 H_2Pd/C
 H_2
 H_2

11. Ans. (D)

12. Ans. (B)

Sol. P.
$$A_{O^-Na} + A_{Br} \xrightarrow{E_2} A + A_{OH}$$

(Elimination product)

Q.
$$\longrightarrow$$
 OMe + HBr \longrightarrow \longrightarrow \longrightarrow H + MeOH \longrightarrow Br

$$R. \nearrow Br + O^{\Theta}Me \xrightarrow{E_2} \nearrow$$

s.
$$\searrow_{ONa + Me-Br} \xrightarrow{SN_2} \searrow_{OMe}$$

ALLEN®

13. Ans. (D)

Sol. (II)(i)(S)

(A)
$$NaOH/CO_2$$

$$(III) \qquad (iv)$$
Benzoic acid is not formed
$$(R)$$

(B)
$$\overbrace{ \begin{array}{c} OH \\ \hline \\ (I) \end{array} }^{Br_2/h\nu} \text{Benzoic acid is not formed}$$

(C)
$$NaOH/CO_2$$
 Benzoic acid is not formed (IV) $NaOH/CO_2$

(P)

14. Ans. [A](I)(ii)(R)

Sol.
$$CH_3$$
 CH_2 —Br $Br_2/h\nu$

mechanism involved is free radical substitution

(B)
$$CH_3CO)_2O/CH_3COOK$$
 Condensation reaction (No radical mechanism involved)

Acetophenone

(C)
$$\xrightarrow{\text{Br}_2/\text{h}\nu}$$
 Condensation is not involved.

(D)
$$\xrightarrow{\text{OH}} \xrightarrow{\text{NaOH/Br}_2} \xrightarrow{\text{Br}} \xrightarrow{\text{ONa}} \xrightarrow{\text{Br}}$$

(No free radical mechanism)

15. Ans. (B)

Sol.
$$C_6H_5CHO + CH_3 - C - O - C - CH_3 \xrightarrow{CH_3COOK} C_6H_5CH = CH - COOH$$

$$Cinnamic acid$$

$$Cis and Trans$$

It is perkin condensation reaction

Mechanism

$$C_6H_5 - C - O - C - CH_3$$
 $CH_3 - C - O - K$
 $CH_2 - C - O - C - CH_3$
 $CH_3 - C - O - K$
 $CH_2 - C - O - C - CH_3$
 $CH_3 - COOH$
 $CH_3 - COOH$
 $CH_3 - CH_3 - CH_3$

16. Ans. (A, C)

Sol. (A)
$$CH_3$$
 O_3/CH_2Cl_2 O_3 CH_3 O_4 O_4 O_5 O_7 O_8 $O_$

(B) Product of ozonolysis of R is having 9 carbon.

$$CH_{3} \xrightarrow{i) O_{3} / CH_{2}Cl_{2}} + CH_{3}CH = O$$

$$CH_{3} \xrightarrow{P} CH_{3} Q$$

give cannizzaro reaction but no haloform

$$CH_{3} \xrightarrow{i) O_{3}/ CH_{2}Cl_{2}} O + CH_{3} - C - CH_{2}$$

$$R \qquad no \ cannizz aro \ but \ give \ haloform$$

(D) Product of ozonolysis of R is having 9 carbon.

17. Ans. (B)

Sol.	Compound/Ion	Magnetic nature of compound
1.	[Ni(CO) ₄]	Diamagnetic
2.	$[NiCl_4]^{2-}$	Paramagnetic
3.	$[Co(NH_3)_4Cl_2]Cl$	Diamagnetic
4.	Na ₃ [CoF ₆]	Paramagnetic

5. Na₂O₂ Diamagnetic

6. CsO₂ Paramagnetic

So total number of paramagnetic compounds is 3.

18. Ans. (8)

Sol.
$$MnO_4^- + [Fe (H_2O)_2 (C_2O_4)_2]^{2-} + 8H^+ \longrightarrow Mn^{2+} + Fe^{3+} + 4CO_2 + 6H_2O$$

$$\frac{r_{H^+}}{r_{MnO_4^-}} = 8$$

19. Ans. (A)

20. Ans. (C)

Sol.

21. Ans. (C)

(P)
$$H - C \equiv C - H$$
 red hot iron tube HNO_3 H_2SO_4 H_2SO_4 H_2S , NH_3 H_2SO_4 H_2SO_4 NH_2 NH_2 NO_2 H_2O NO_2 H_2SO_4 NO_2 NO_2 H_2SO_4 NO_2 NO_2